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Introduction

• Popular ensemble-based methods rely on Gaussian assumption.

• Many parameters have non-Gaussian behavior
• Categorical facies

• Multilevel uncertainties

• The assimilation Vanishes its original distribution.

• How to handle with the non-Gaussianity in ensemble-methods?
• Parameterization techniques

Assimilation 
algorithm
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Introduction

• Several parameterization methods.

• Deep learning techniques:
• Autoencoder (Kim et al., 2020)

• CNN-PCA (Liu and Durlofsky, 2021)

• GANs (Canchumuni et al., 2021; Zhang et al., 2022)

• Comparison between GAN and VAE (Bao et al., 2022):
• VAE performed better in DA

• GAN resulted in better realizations

• Proceed with investigation of GANs:
• Evaluate another GAN architecture in DA (Autoencoder Discriminator)
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Generative adversarial networks

• GANs (Goodfellow et al., 2014):
• Composed by a generator and a 

discriminator:
• Generator takes a random vector and try to 

generate new samples.
• Discriminator try to classify samples as real 

(from original domain) or fake (generated 
by generator).

• Adversarial training:
• Generator and discriminator must compete 

against each other.
• Discriminator is trained to better classify 

between real and fake.
• Generator is trained to ‘fool’ the 

discriminator.
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Generative adversarial networks

• DCGAN (Radford et al., 2015):
• Zero-sum game between 𝒢 and 𝒟:

• min
𝒢
max
𝒟
𝐸𝐱~𝑝 𝐱 log𝒟 𝐱 + 𝐸 ~𝑝  log 1 − 𝒟 𝒢  

ℒ𝐷 = max
𝒟
log𝒟 𝐱 + log 1 − 𝒟 𝒢  

ℒ𝐺 = min
𝒢
log 1 − 𝒟 𝒢  

In generator 
training: 

𝒟 𝒢  to 1

In Discriminator 
training:

𝒟 𝒢  to 0 

Generator: 𝒢   

Discriminator: 𝒟  𝐱

Original:
𝐱    

Generated:
𝐱         

Latent 
representation:

 

 =   1
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Generative adversarial networks

• Wasserstein GAN (WGAN)(Arjovsky et al., 2017):
• Approximates Earth Mover Distance (EMD) (or Wasserstein-1 distance).

• Discriminator as critic (don’t have probabilities):
• Instead of classifying, discriminator estimates the Wasserstein distance between real and 

generated distributions: 𝒟 ∙ =   ∞

• Critic maximizes the distance between its output on real and fake samples

• Generator minimizes critic output for fake samples

• min
𝒢
max
𝒟
𝐸𝐱~𝑝 𝐱 𝒟 𝐱 − 𝐸 ~𝑝  𝒟 𝒢  

• Seeks for convergence of generator.

ℒ𝐷 = max
𝒟
𝒟 𝐱 − 𝒟 𝒢  

ℒ𝐺 = min
𝒢
−𝒟 𝒢  

clip 𝒟 −𝑐 𝑐

In Generator 
training:

𝒟 𝒢  to ∞

In Discriminator 
training:

𝒟 𝒢  to 0 
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Generative adversarial networks

• Wasserstein GAN (WGAN) (Arjovsky et al., 2017):

• Differences:
• Discriminator output has no constraint (sigmoid in DCGAN because [0, 1])

• Weight clipping to ensure Lipschitz constraint (𝑤)

• Need pretrain the discriminator (critic) or train at different rates

• Solved the training failure with cost of convergence speed (Gonog and 
Zhou, 2019) (also reported in Canchumuni et al., 2021).
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Generative adversarial networks

• Boundary Equilibrium GAN (BEGAN) (Berthelot et al., 2017):
• Autoencoder discriminator (distribution of errors instead distribution of samples)

• Stable training.

• Trade-off between image quality and image diversity.

• Introduced a convergence measure: ℳ

Generator: 𝒢   

Discriminator: 𝒟  𝐱

Original:
𝐱    

Generated:
𝐱         

Latent 
representation:

 

Reconstructed:
𝐱             
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Generative adversarial networks

• Boundary Equilibrium GAN (BEGAN) (Berthelot et al., 2017):
• Equilibrium when 𝐸𝐱~𝑝 𝐱 𝒟 𝐱 = 𝐸 ~𝑝  𝒟 𝒢  

• Discriminator has  two objectives:
• Auto-encode real images

• Distinguish between real and fake

• Relax the equilibrium with 𝛾    1

• Defining the pixel-wise loss ℒ 𝑣 = 𝑣 − 𝒟 𝑣

• Losses:

•

ℒ𝐷 = ℒ 𝐱 − 𝑘𝑡ℒ 𝒢  

ℒ𝐺 = ℒ 𝒢  

𝑘𝑡+1 = 𝑘𝑡 + 𝜆𝑘 𝛾ℒ 𝐱 − 𝑘𝑡ℒ 𝒢  

Diversity ratio

Proportional gain

Samples at varying 𝛾
(Berthelot et al., 2017)

Convergence measure: ℳ = ℒ 𝐱 + 𝛾ℒ 𝐱 − ℒ 𝒢  
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Experiment 1: GANs evaluation

Training image (250x250)

• Channelized reservoir with categorical facies

• 10,000 training samples with SNESIM (Strebelle, 2002)

• Bao et al. (2022) – 80,000 

• Canchumuni et al. (2021) and Zhang et al. (2022) –
20,000

• 20,000 iterations for all networks (TensorFlow 2.7.0)

• Latent space 𝑁𝑧 = 5  

• 2 channels: [-1, 1] -> final facies is the maximum value 
Canchumuni et al. (2021)
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Experiment 1: GANs evaluation

DCGAN WGAN BEGAN
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Experiment 1: GANs evaluation

• Random realizations generated with GANs

DCGAN

WGAN

BEGAN

Original

mean std Random realizations
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Experiment 1: GANs evaluation

• Percentiles from original and generated ensembles (𝑁 = 2  )

BEGAN

DCGAN

WGAN



15

All rights reserved to UNICAMP, EQUINOR and FAPESP

Experiment 2: Assimilation

• Two options:

• Start by encoding  0 𝑗=1
𝑁𝑒 to obtain  0 𝑗=1

𝑁𝑒 (Canchumuni et al., 2021) (encoding)

• Start by generating the initial ensemble from  0 𝑗=1
𝑁𝑒 ~   𝐈 (random)

 0
Update
Step

  +1
=       

  +1

Forward
Step

  
=    

  

  +1

 0

Assimilation loop

 =  + 1

 0

Update
Step

  +1
=       

  +1

Forward
Step

  
=    

  

  +1

 0

Assimilation loop

 =  + 1

Encoding Random
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Experiment 2: Assimilation

Size (gridblocks) 51x51x1

Wells 9 (6 producers, 3 injectors)

Data OPR, WPR, WIR (2500 days) 
(𝑁𝑑 = 1  5)

Parameters Log-Permeability (𝑁𝑚 = 26 1)

Ensemble size 200

Data assimilation ES-MDA (Emerick and Reynolds, 
2013) with 𝑁 = 𝛼 = 8

Reference model ( true)

• Test case:

ES-MDA update step:

 𝑗  +1 =  𝑗  + 𝐂𝐌𝐃 𝐂𝐃𝐃 + 𝛼 𝐂𝐃   𝐛  𝑗 −  𝑗  

 =1

𝑁𝑖

𝛼 
 1 = 1   𝐛  𝑗~   𝐛  𝛼 𝐂𝐃
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Experiment 2: Assimilation

• Start encoding

DCGAN

WGAN

BEGAN

mean std 𝑛 = 1 𝑛 = 2 𝑛 = 3

 true

Prior* and posterior data-mismatch for all 
analyzed cases.

*Prior is the same
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Experiment 2: Assimilation

• Start random

DCGAN

WGAN

BEGAN

mean std

 true

𝑛 = 1 𝑛 = 2 𝑛 = 3

Prior* and posterior data-mismatch for all 
analyzed cases.

*All cases resulted in similar values
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Experiment 2: Assimilation

• Start encoding

DCGAN

WGAN

BEGAN

P2 P4
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Experiment 2: Assimilation

• Start random

DCGAN

WGAN

BEGAN

P2 P4



21

All rights reserved to UNICAMP, EQUINOR and FAPESP

Conclusions

• BEGAN resulted in stable training (convergence in loss functions)

• Generated images without discontinuities with ensemble mean and std 
closer to original ensemble in comparison with WGAN

• Equivalent assimilation results with BEGAN

• Next steps/improvements:
• Evaluation of hyperparameters effect (𝛾, 𝑁𝑧)

• Analysis of different BEGAN architectures (e.g. BEGAN-E) (Xie et al., 2022)

• Parameterization/generation of 3D reservoirs with GANs stills an open problem
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Conclusions

Thank you

for your attention!

ranazzi@usp.br
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Appendix: Structures

• Networks Architecture:

Generator Config. - Output - Activ.

Input [500]

Fully-conected 7x7x8n

Reshape [7x7x8n]

2D conv. Transpose filters = 8n, size=(5,5), strides=(2,2), padding=same - [14x14x128] - ReLU

Resize Bilinear - [13x13x2n]

2D conv. Transpose filters = 4n, size=(5,5), strides=(2,2), padding=same - [26x26x64] - ReLU

2D conv. Transpose filters = 2n, size=(5,5), strides=(2,2), padding=same - [52x52x32] - ReLU

Resize Bilinear - [51x51xn]

2D conv. Transpose filters = 2, size=(5,5), strides=(1,1), padding=same - [51x51x2] - tanh

Discriminator Config. - Output - Activ.

Input [51x51x2]

2D conv. filters = n, size=(4,4), strides=(2,2), padding=same - [26x26x32] - LeakyReLU

2D conv. filters = 2n, size=(4,4), strides=(2,2), padding=same - [13x13x64] - LeakyReLU

2D conv. filters = 4n, size=(4,4), strides=(2,2), padding=same - [7x7x128] - LeakyReLU

2D conv. filters = 8n, size=(4,4), strides=(1,1), padding=same - [7x7x256] - LeakyReLU

Flatten -

Fully-conected 1 - sigmoid/linear

DCGAN/WGAN

Encoder Config. - Output - Activ.

Input [51x51x2]

2D conv. filters = n, size=(3,3), strides=(1,1), padding=same - [51x51x32] - LeakyReLU

2D conv. filters = n, size=(3,3), strides=(2,2), padding=same - [26x26x32] - LeakyReLU

2D conv. filters = 2n, size=(3,3), strides=(1,1), padding=same - [26x26x64] - LeakyReLU

2D conv. filters = 2n, size=(3,3), strides=(2,2), padding=same - [13x13x64] - LeakyReLU

2D conv. filters = 3n, size=(3,3), strides=(1,1), padding=same - [13x13x96] - LeakyReLU

2D conv. filters = 3n, size=(3,3), strides=(2,2), padding=same - [7x7x96] - LeakyReLU

2D conv. filters = 4n, size=(3,3), strides=(1,1), padding=same - [7x7x128] - LeakyReLU

2D conv. filters = 4n, size=(3,3), strides=(1,1), padding=same - [7x7x128] - LeakyReLU

Flatten -

Fully-conected [500] - tanh

Decoder/Generator Config. - Output - Activ.

Input [500]

Fully-conected 7x7xn

Reshape [7x7xn]

2D conv. filters = n, size=(3,3), strides=(1,1), padding=same - [7x7x32] - LeakyReLU

Resize 1 Nearest Neighbour - [13x13x32]

Skip Connection 1 Concatenate [Resize1, Reshape]

2D conv. filters = n, size=(3,3), strides=(1,1), padding=same - [13x13x32] - LeakyReLU

Resize 2 Nearest Neighbour - [26x26x32]

Skip Connection 2 Concatenate [Resize2, Reshape]

2D conv. filters = n, size=(3,3), strides=(1,1), padding=same - [26x26x32] - LeakyReLU

Resize 3 Nearest Neighbour - [51x51x32]

2D conv. filters = n, size=(3,3), strides=(1,1), padding=same - [51x51x32] - LeakyReLU

2D conv. filters = 2, size=(3,3), strides=(1,1), padding=same - [51x51x2] - tanh

BEGAN
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Appendix: Hyperparameters

• Networks hyperparameters:

Hyperparameters

GAN WGAN BEGAN

𝑁𝑧 = 5  

Adam RMSprop Adam

𝛼𝒢 = 𝛼𝒟 =  .   2* 𝛼𝒢 = 𝛼𝒟 = 1𝐸 − 5 𝛼𝒢 = 𝛼𝒟 =  .   1∗∗

𝑛𝑐𝑟 𝑡 𝑐 = 5 ℎ = 5  

𝑐 =  . 5 𝜆𝑘 =  .  1

𝛾 =  .7

* Generator trained twice in relation to discriminator
** Exponential decay at 10000 steps with rate equal to 0.5
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Appendix: Losses

𝑘𝑡 Convergence measure ℳ


