

Deep convolutional GANs as parameterization method in data assimilation

Presented by: Paulo Henrique Ranazzi, PhD student ranazzi@usp.br

Marcio Augusto Sampaio Pinto, Advisor marciosampaio@usp.br

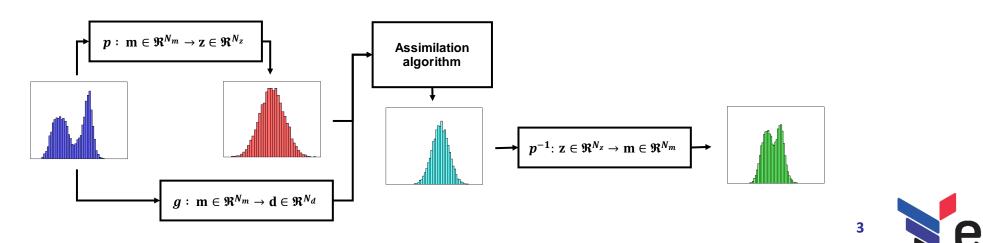
June 01, 2022

Outline

- Introduction
- Generative adversarial networks
- Experiment 1: GANs evaluation
- Experiment 2: Assimilation
- Conclusions
- Acknowledgements
- References

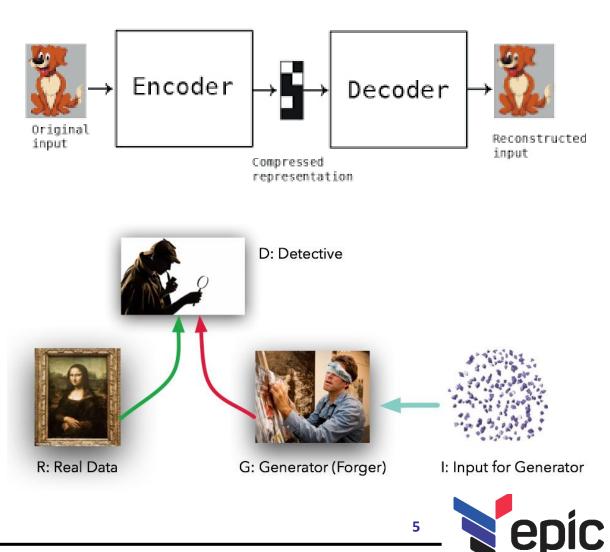
Introduction

- Popular ensemble-based methods rely on Gaussian assumption.
- Many parameters have non-Gaussian behavior
 - Categorical facies
 - Multilevel uncertainties
- The assimilation Vanishes its original distribution.
- How to handle with the non-Gaussianity in ensemble-methods?
 - Parameterization techniques



- Several parameterization methods.
- Deep learning techniques:
 - Autoencoder (Kim et al., 2020)
 - CNN-PCA (Liu and Durlofsky, 2021)
 - GANs (Canchumuni et al., 2021; Zhang et al., 2022)
- Comparison between GAN and VAE (Bao et al., 2022):
 - VAE performed better in DA
 - GAN resulted in better realizations
- Proceed with investigation of GANs:
 - Evaluate another GAN architecture in DA (Autoencoder Discriminator)

- GANs (Goodfellow et al., 2014):
 - Composed by a generator and a discriminator:
 - Generator takes a random vector and try to generate new samples.
 - Discriminator try to classify samples as real (from original domain) or fake (generated by generator).
 - Adversarial training:
 - Generator and discriminator must compete against each other.
 - Discriminator is trained to better classify between real and fake.
 - Generator is trained to 'fool' the discriminator.

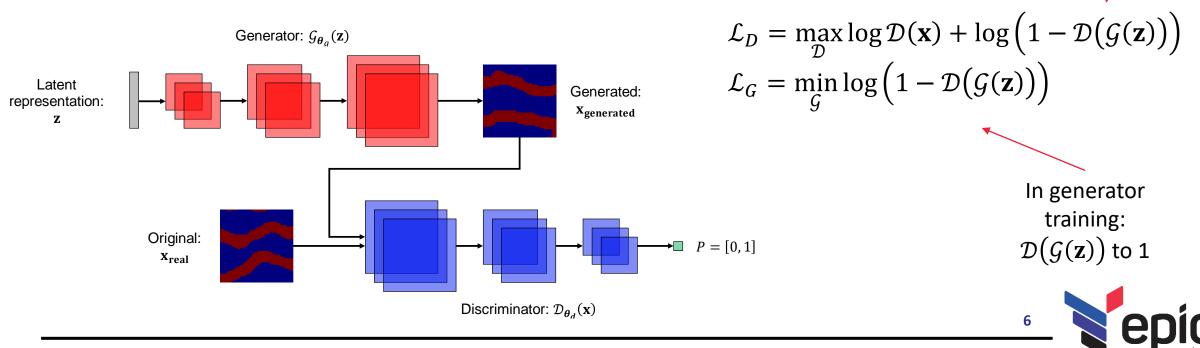


In Discriminator

Generative adversarial networks

- DCGAN (Radford et al., 2015):
 - Zero-sum game between \mathcal{G} and \mathcal{D} :

• $\min_{\mathcal{G}} \max_{\mathcal{D}} E_{\mathbf{x} \sim p(\mathbf{x})} [\log \mathcal{D}(\mathbf{x})] + E_{\mathbf{z} \sim p(\mathbf{z})} \left[\log \left(1 - \mathcal{D}(\mathcal{G}(\mathbf{z})) \right) \right]$ training: $\mathcal{D}(\mathcal{G}(\mathbf{z})) \text{ to } 0$



- Wasserstein GAN (WGAN)(Arjovsky et al., 2017):
 - Approximates Earth Mover Distance (EMD) (or Wasserstein-1 distance).
 - Discriminator as critic (don't have probabilities):
 - Instead of classifying, discriminator estimates the Wasserstein distance between real and generated distributions: $\mathcal{D}(\cdot) = [0, \infty]$
 - Critic maximizes the distance between its output on real and fake samples
 - Generator minimizes critic output for fake samples
 - $\min_{\mathcal{G}} \max_{\mathcal{D}} E_{\mathbf{x} \sim p(\mathbf{x})}[\mathcal{D}(\mathbf{x})] E_{\mathbf{z} \sim p(\mathbf{z})}[\mathcal{D}(\mathcal{G}(\mathbf{z}))]$
 - Seeks for convergence of generator.

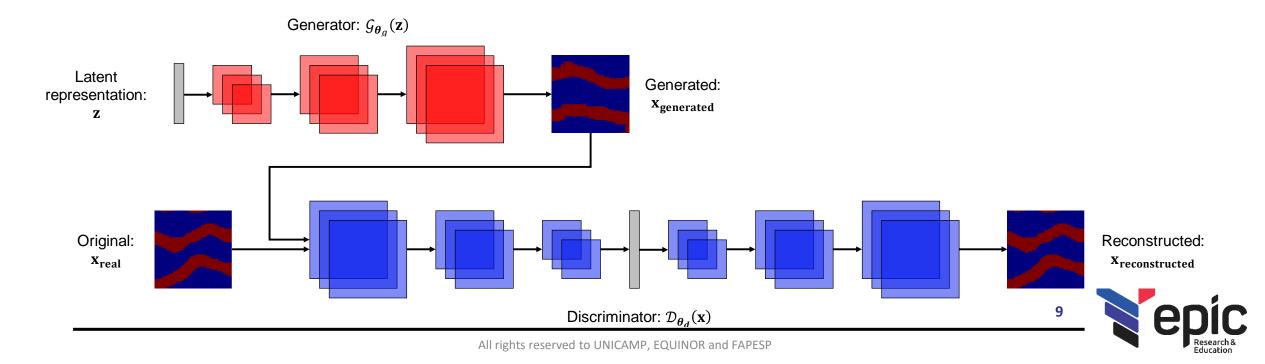
In Discriminator training: $\mathcal{D}(\mathcal{G}(\mathbf{z}))$ to 0

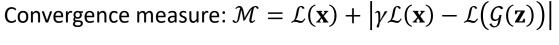
 $\mathcal{L}_{D} = \max_{\mathcal{D}} \mathcal{D}(\mathbf{x}) - \mathcal{D}(\mathcal{G}(\mathbf{z}))$ $\mathcal{L}_{G} = \min_{G} - \mathcal{D}(\mathcal{G}(\mathbf{z}))$ $\operatorname{clip} \mathcal{D}(-c,c)$

In Generator training: $\mathcal{D}(\mathcal{G}(\mathbf{z}))$ to ∞

- Wasserstein GAN (WGAN) (Arjovsky et al., 2017):
- Differences:
 - Discriminator output has no constraint (sigmoid in DCGAN because [0, 1])
 - Weight clipping to ensure Lipschitz constraint (w)
 - Need pretrain the discriminator (critic) or train at different rates
- Solved the training failure with cost of convergence speed (Gonog and Zhou, 2019) (also reported in Canchumuni et al., 2021).

- Boundary Equilibrium GAN (BEGAN) (Berthelot et al., 2017):
 - Autoencoder discriminator (distribution of errors instead distribution of samples)
 - Stable training.
 - Trade-off between image quality and image diversity.
 - Introduced a convergence measure: ${\mathcal M}$





Proportional gain

Generative adversarial networks

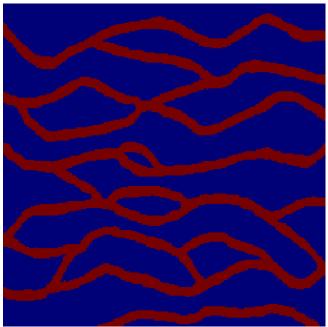
- Boundary Equilibrium GAN (BEGAN) (Berthelot et al., 2017):
 - Equilibrium when $E_{\mathbf{x} \sim p(\mathbf{x})}[\mathcal{D}(\mathbf{x})] = E_{\mathbf{z} \sim p(\mathbf{z})}[\mathcal{D}(\mathcal{G}(\mathbf{z}))]$
 - Discriminator has two objectives:
 - Auto-encode real images
 - Distinguish between real and fake
 - Relax the equilibrium with $\gamma \in [0, 1]$
 - Defining the pixel-wise loss $\mathcal{L}(v) = |v \mathcal{D}(v)|$
 - Losses:

• $\begin{cases} \mathcal{L}_{D} = \mathcal{L}(\mathbf{x}) - k_{t}\mathcal{L}(\mathcal{G}(\mathbf{z})) \\ \mathcal{L}_{G} = \mathcal{L}(\mathcal{G}(\mathbf{z})) \\ k_{t+1} = k_{t} + \lambda_{k} \left(\gamma \mathcal{L}(\mathbf{x}) - k_{t}\mathcal{L}(\mathcal{G}(\mathbf{z}))\right) \end{cases}$

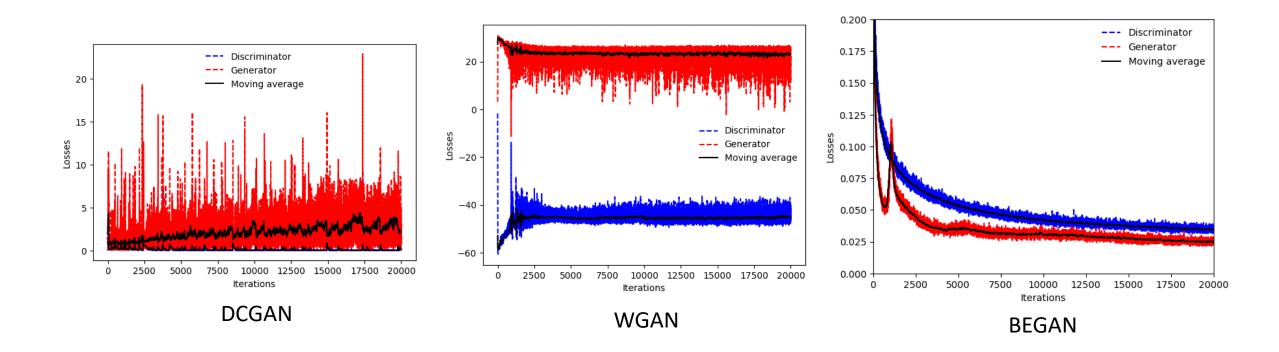
Diversity ratio

Samples at varying γ (Berthelot et al., 2017)

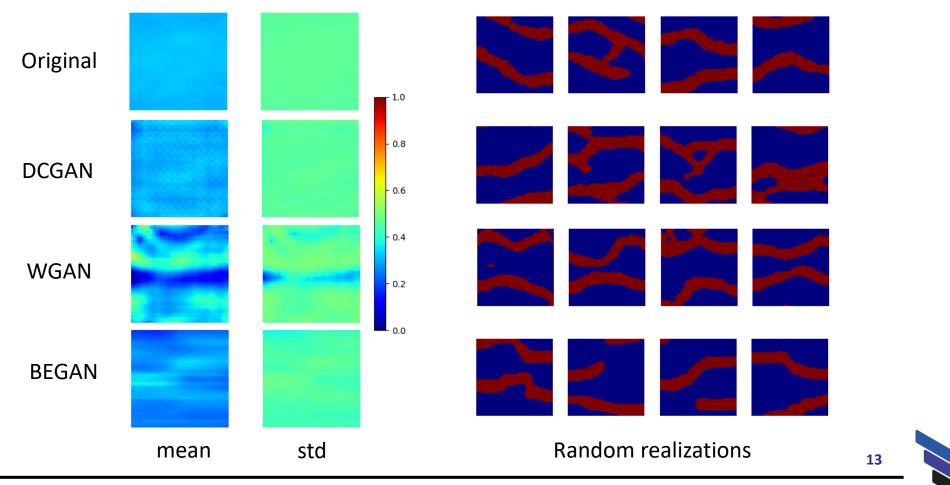
- Channelized reservoir with categorical facies
- 10,000 training samples with SNESIM (Strebelle, 2002)
 - Bao et al. (2022) 80,000
 - Canchumuni et al. (2021) and Zhang et al. (2022) 20,000
- 20,000 iterations for all networks (TensorFlow 2.7.0)
- Latent space $N_z = 500$
- 2 channels: [-1, 1] -> final facies is the maximum value Canchumuni et al. (2021)



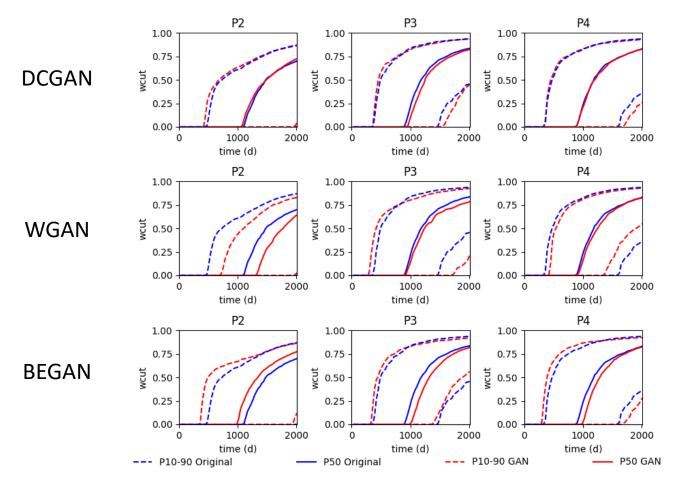
Training image (250x250)



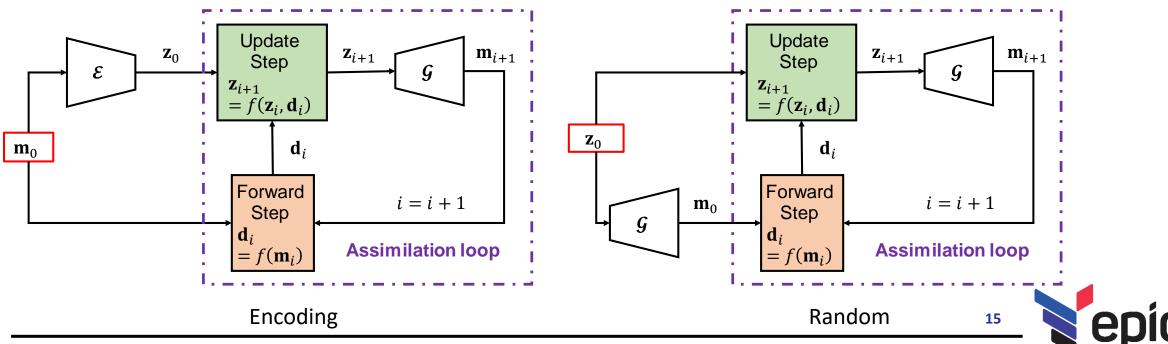
• Random realizations generated with GANs



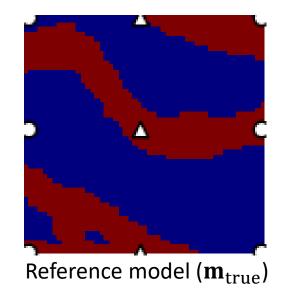
• Percentiles from original and generated ensembles (N = 200)



- Two options:
 - Start by encoding $\{\mathbf{m}_0\}_{j=1}^{N_e}$ to obtain $\{\mathbf{z}_0\}_{j=1}^{N_e}$ (Canchumuni et al., 2021) (encoding)
 - Start by generating the initial ensemble from $\{\mathbf{z}_0\}_{i=1}^{N_e} \sim N(0, \mathbf{I})$ (random)



• Test case:



Size (gridblocks)	51x51x1	
Wells	9 (6 producers, 3 injectors)	
Data	OPR, WPR, WIR (2500 days) $(N_d = 1005)$	
Parameters	Log-Permeability ($N_m = 2601$)	
Ensemble size	200	
Data assimilation	ES-MDA (Emerick and Reynolds, 2013) with $N_i = \alpha_i = 8$	

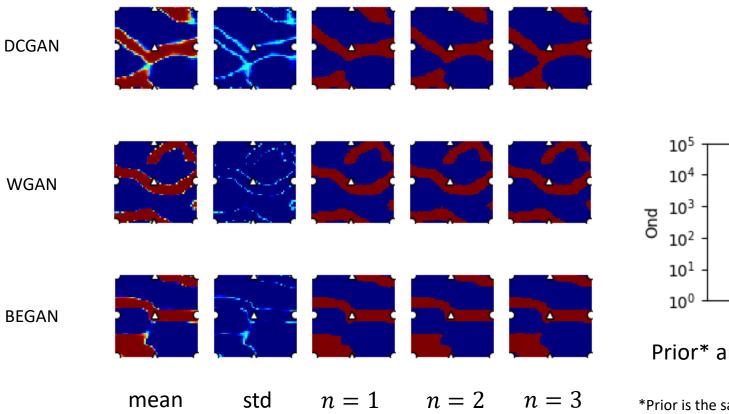
ES-MDA update step: $\mathbf{m}_{j,i+1} = \mathbf{m}_{j,i} + \mathbf{C}_{\mathbf{MD}}(\mathbf{C}_{\mathbf{DD}} + \alpha_i \mathbf{C}_{\mathbf{D}}) (\mathbf{d}_{\mathbf{obs},j} - \mathbf{d}_{j,i})$

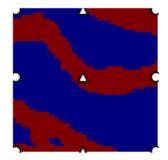
 $\sum \alpha_i^{-1} = 1$

 $\mathbf{d}_{\mathbf{obs},j} \sim (\mathbf{d}_{\mathbf{obs}}, \alpha_i \mathbf{C_D})$

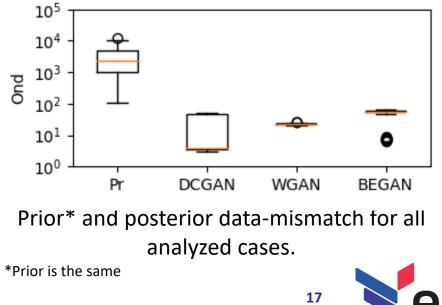
• Start encoding

DCGAN



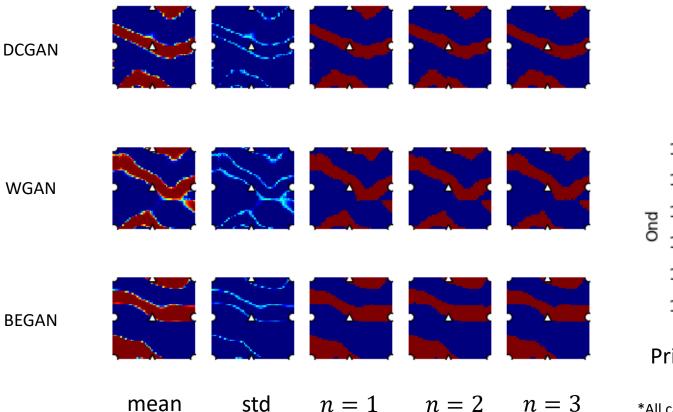


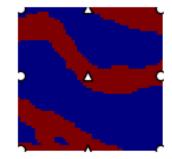
m_{true}



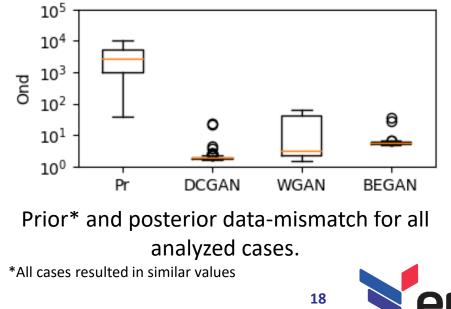
• Start random

DCGAN

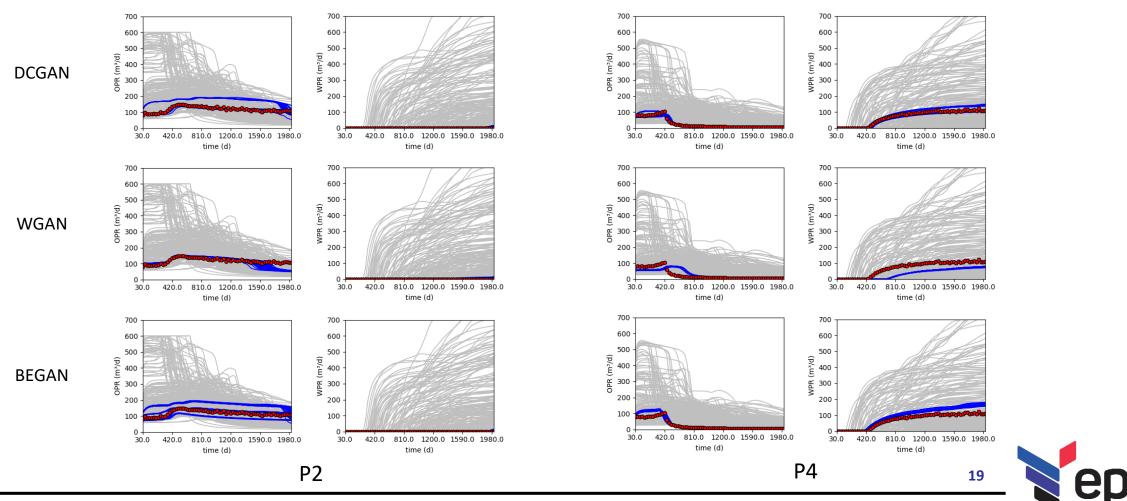


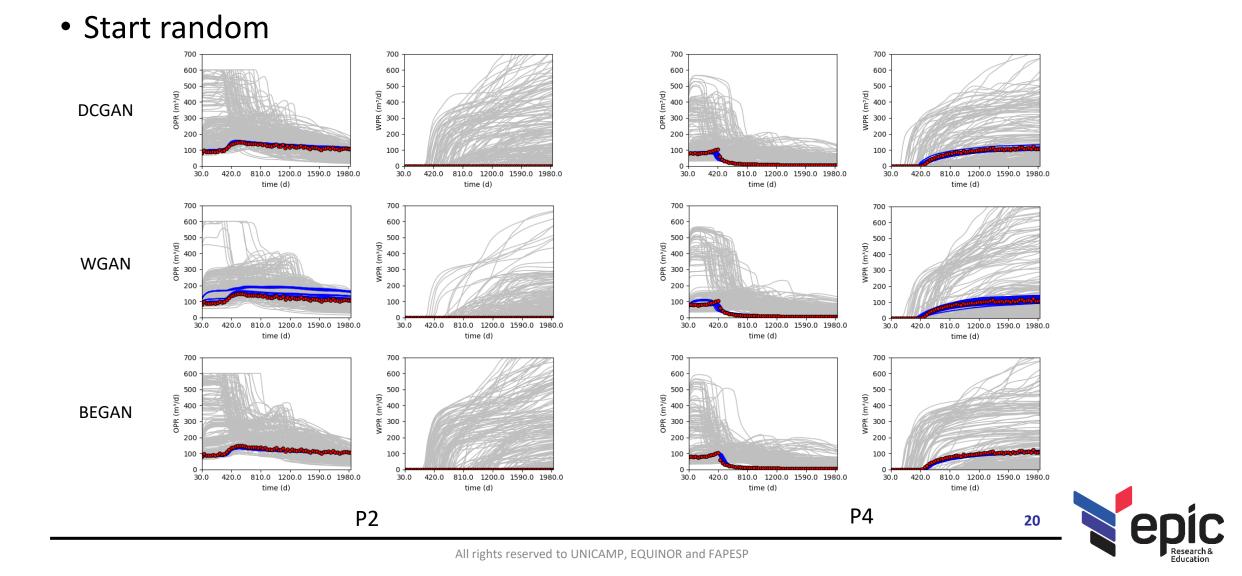


m_{true}



• Start encoding





Conclusions

- BEGAN resulted in stable training (convergence in loss functions)
- Generated images without discontinuities with ensemble mean and std closer to original ensemble in comparison with WGAN
- Equivalent assimilation results with BEGAN

- Next steps/improvements:
 - Evaluation of hyperparameters effect (γ , N_z)
 - Analysis of different BEGAN architectures (e.g. BEGAN-E) (Xie et al., 2022)
 - Parameterization/generation of 3D reservoirs with GANs stills an open problem

Acknowledgments

- Kim S., Lee K., Lim J.; Jeong H., Min B., 2020. Development of ensemble smoother-neural network and its application to history matching of channelized reservoirs. Journal of Petroleum Science and Engineering, 191, 107159. <u>https://doi.org/10.1016/j.petrol.2020.107159</u>
- Liu Y., Durlofsky L.J., 2021. 3D CNN-PCA: A deep-learning-based parameterization for complex geomodels. Computers & Geosciences, 148, 104676. <u>https://doi.org/10.1016/j.cageo.2020.104676</u>
- Bao J., Li L., Davis A., 2022. Variational Autoencoder or Generative Adversarial Networks? A Comparison of Two Deep Learning Methods for Flow and Transport Data Assimilation. Mathematical Geosciences. <u>https://doi.org/10.1007/s11004-022-10003-3</u>
- Canchumuni S.W.A., Castro J.D.B., Potratz J., Emerick A.A., Pacheco M.A.C., 2021. Recent developments combining ensemble smoother and deep generative networks for facies history matching. Computational Geosciences, 25, 433-466. https://doi.org/10.1007/s10596-020-10015-0
- Zhang K., Yu H.-Q., Ma X.-P., Zhang J.-D., Wang J., Yao C.-J., Yang Y.-F., Sun H., Yao J., Wang J., 2022. Multi-source information fused generative adversarial network model and data assimilation based history matching for reservoir with complex geologies. Petroleum Science, 19, 707-719. <u>https://doi.org/10.1016/j.petsci.2021.10.007</u>
- Goodfellow I.J., Pouget-Abadie J., Mirza M., Xu B., Warde-Farley D., Ozair S., Courville A., Bengio Y., 2014. Generative Adversarial Nets. arXiv:1406.2661 [stat.ML]
- Radford A., Metz L., Chintala S., 2015. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. arXiv:1511.06434v2 [cs.LG]

References

Arjovsky M., Chintala S., Bottou L., 2017. Wassertein GAN. arXiv:1701.07875 [stat.ML]

- Gonog L., Zhou Y., 2019. A Review: Generative Adversarial Networks. Presented in: 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA). <u>https://doi.org/10.1109/ICIEA.2019.8833686</u>
- Berthelot D., Schumm T., Metz L., 2017. BEGAN: Boundary Equilibrium Generative Adversarial Networks. arXiv:1703.10717 [cs.LG]
- Strebelle S., 2002. Conditional Simulation of Complex Geological Structures Using Multiple-Point Statistics. Mathematical Geology, 34, 1-21. <u>https://doi.org/10.1023/A:1014009426274</u>
- Emerick A.A., Reynolds A.C., 2013. Ensemble Smoother with multiple data assimilation. Computers & Geosciences, 55, 3-15. https://doi.org/10.1016/j.cageo.2012.03.011
- Xie Y., Lin T., Chen Z., Xiong W., Ran Q., Shang C., 2022. A lightweight ensemble discriminator for Generative Adversarial Networks. Knowledge-Based Systems (in press). <u>https://doi.org/10.1016/j.knosys.2022.108975</u>

Thank you for your attention!

ranazzi@usp.br

Appendix: Structures

• Networks Architecture:

DCGAN/WGAN				
Generator	Config Output - Activ.			
Input	[500]			
Fully-conected	7x7x8n			
Reshape	[7x7x8n]			
2D conv. Transpose	filters = 8n, size=(5,5), strides=(2,2), padding=same - [14x14x128] - ReLU			
Resize	Bilinear - [13x13x2n]			
2D conv. Transpose	filters = 4n, size=(5,5), strides=(2,2), padding=same - [26x26x64] - ReLU			
2D conv. Transpose	filters = 2n, size=(5,5), strides=(2,2), padding=same - [52x52x32] - ReLU			
Resize	Bilinear - [51x51xn]			
2D conv. Transpose	filters = 2, size=(5,5), strides=(1,1), padding=same - [51x51x2] - tanh			

Discriminator	Config Output - Activ.	
Input	[51x51x2]	
2D conv.	filters = n, size=(4,4), strides=(2,2), padding=same - [26x26x32] - LeakyReLU	
2D conv.	filters = 2n, size=(4,4), strides=(2,2), padding=same - [13x13x64] - LeakyReLU	
2D conv.	filters = 4n, size=(4,4), strides=(2,2), padding=same - [7x7x128] - LeakyReLU	
2D conv.	filters = 8n, size=(4,4), strides=(1,1), padding=same - [7x7x256] - LeakyReLU	
Flatten	-	
Fully-conected	1 - sigmoid/linear	

BEGAN				
Encoder	Config Output - Activ.			
Input	[51x51x2]			
2D conv.	filters = n, size=(3,3), strides=(1,1), padding=same - [51x51x32] - LeakyReLU			
2D conv.	filters = n, size=(3,3), strides=(2,2), padding=same - [26x26x32] - LeakyReLU			
2D conv.	filters = 2n, size=(3,3), strides=(1,1), padding=same - [26x26x64] - LeakyReLU			
2D conv.	filters = 2n, size=(3,3), strides=(2,2), padding=same - [13x13x64] - LeakyReLU			
2D conv.	filters = 3n, size=(3,3), strides=(1,1), padding=same - [13x13x96] - LeakyReLU			
2D conv.	filters = 3n, size=(3,3), strides=(2,2), padding=same - [7x7x96] - LeakyReLU			
2D conv.	filters = 4n, size=(3,3), strides=(1,1), padding=same - [7x7x128] - LeakyReLU			
2D conv.	filters = 4n, size=(3,3), strides=(1,1), padding=same - [7x7x128] - LeakyReLU			
Flatten	-			
Fully-conected	[500] - tanh			

Decoder/Generator	Config Output - Activ.	
Input	[500]	
Fully-conected	7x7xn	
Reshape	[7x7xn]	
2D conv.	filters = n, size=(3,3), strides=(1,1), padding=same - [7x7x32] - LeakyReLU	
Resize 1	Nearest Neighbour - [13x13x32]	
Skip Connection 1	Concatenate [Resize1, Reshape]	
2D conv.	filters = n, size=(3,3), strides=(1,1), padding=same - [13x13x32] - LeakyReLU	
Resize 2	Nearest Neighbour - [26x26x32]	
Skip Connection 2	Concatenate [Resize2, Reshape]	
2D conv.	filters = n, size=(3,3), strides=(1,1), padding=same - [26x26x32] - LeakyReLU	
Resize 3	Nearest Neighbour - [51x51x32]	
2D conv.	filters = n, size=(3,3), strides=(1,1), padding=same - [51x51x32] - LeakyReLU	
2D conv.	filters = 2, size=(3,3), strides=(1,1), padding=same - [51x51x2] - tanh	

Appendix: Hyperparameters

• Networks hyperparameters:

Hyperparameters				
GAN	WGAN	BEGAN		
$N_z = 500$				
Adam	RMSprop	Adam		
$lpha_{\mathcal{G}} = lpha_{\mathcal{D}} = 0.0002*$	$\alpha_{\mathcal{G}} = \alpha_{\mathcal{D}} = 1E - 5$	$lpha_{\mathcal{G}} = lpha_{\mathcal{D}} = 0.0001**$		
	$n_{critic} = 5$	h = 500		
	c = 0.05	$\lambda_k = 0.001$		
		$\gamma = 0.7$		
 * Generator trained twice in relation to discriminator ** Exponential decay at 10000 steps with rate equal to 0.5 				

Appendix: Losses

