
Online algorithms
for learning data-driven models of chaotic dynamics

Marc Bocquet†, Quentin Malartic†, Alban Farchi†,
Massimo Bonavita‡, Patrick Laloyaux‡, Marcin Chrust‡,

†CEREA, École des Ponts and EDF R&D, Île-De-France, France
‡ECMWF, Reading, United Kingdom.

M. Bocquet EnKF Workshop 2022, organised by NORCE Energy, NERSC and Equinor 1 / 25



Combining data assimilation and machine learning

Outline

1 Combining data assimilation and machine learning
With dense and perfect observations
With sparse and noisy observations

2 Model error learning with a 4D-Var
Resolvent or tendency correction
Online model error correction
Illustrations on low-order models

3 Online learning with a local EnKF
Focus on the unstable/neutral subspace
Focus on the LEnSRF-ML update and global parameters
Illustrations on low-order models

4 Conclusions

5 References

M. Bocquet EnKF Workshop 2022, organised by NORCE Energy, NERSC and Equinor 2 / 25



Combining data assimilation and machine learning With dense and perfect observations

Machine learning for NWP with dense and perfect observations

▶ A typical (supervised) machine learning problem: given observations yk of a system, derive a
surrogate model of that system.

J (p) =
Nt∑

k=1

∥∥yk+1 − M(p,yk)
∥∥2
.

▶ M depends on a set of coefficients p (e.g., the weights and biases of a neural network).

▶ This requires dense and perfect observations of the system. In NWP, observations are usually
sparse and noisy: we need data assimilation!
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Combining data assimilation and machine learning With sparse and noisy observations

Machine learning for NWP with sparse and noisy observations

▶ A rigorous Bayesian formalism for this problem:1

J (p,x0, . . . ,xNt ) =
1
2

Nt∑
k=0

∥∥yk − Hk(xk)
∥∥2

R−1
k

+
1
2

Nt−1∑
k=0

∥∥xk+1 − M(p,xk)
∥∥2

Q−1
k

.

▶ This resembles a typical weak-constraint 4D-Var cost function!
▶ DA is used to estimate the state and then ML is used to estimate the model.

(p?,x?
0:K)

y0:K

Initialisation

choose p0

DA step (4D-Var)

estimate xa
0:K

ML step (NN)

update p

p0 xa
0:K

p

1[Bocquet et al. 2019; Bocquet et al. 2020; Brajard et al. 2020] in the wake of [Hsieh et al. 1998; Abarbanel et al. 2018]
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Combining data assimilation and machine learning With sparse and noisy observations

Machine learning for NWP: learning model error

▶ Even though NWP models are not perfect, they are already quite good!
▶ Instead of building a surrogate model from scratch, we use the DA-ML framework to build a

hybrid surrogate model, with a physical part and a statistical part:2

Physical model

Statistical model

Hybrid model

▶ In practice, the statistical part is trained to learn the error of the physical model.
▶ In general, it is easier to train a correction model than a full model: we can use smaller NNs

and less training data.

2[Farchi et al. 2021; Brajard et al. 2021].
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Model error learning with a 4D-Var Resolvent or tendency correction

Typical architecture of a physical model

▶ The model is defined by a set of ODEs or PDEs which define the tendencies:

∂x
∂t

= ϕ(x). (1)

▶ A numerical scheme is used to integrate the tendencies from time t to t+ δt (e.g.,
Runge–Kutta):

x(t+ δt) = F
(

x(t)
)
. (2)

▶ Several integration steps are composed to define the resolvent from one analysis (or window)
to the next:

M : xk 7→ xk+1 = F ◦ · · · ◦ F(xk) (3)

Resolvent correction M

▶ Physical model and of NN are
independent.

▶ NN must predict the analysis increments.
▶ Resulting hybrid model not suited for

short-term predictions.
▶ For DA, need to assume linear growth of

errors in time to rescale correction.

Tendency correction ϕ

▶ Physical model and NN are entangled.
▶ Need TL of physical model to train NN!
▶ Resulting hybrid model suited for any

prediction.
▶ Can be used as is for DA.
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Model error learning with a 4D-Var Resolvent or tendency correction

Two-scale Lorenz model (L05III)

▶The two-scale Lorenz model (L05III) model: 36 slow & 360 fast variables, with equations:

dxn

dt
= ψ+

n (x) + F − h
c

b

9∑
m=0

um+10n,

dum

dt
=
c

b
ψ−

m(bu) + h
c

b
xm/10, with ψ±

n (x) = xn∓1(xn±1 − xn∓2) − xn,

0 500 1000 1500 2000 2500

0

10

20

30
Coarse modes dynamics

-5.0

0.0

5.0

10.0

0 500 1000 1500 2000 2500
0

100

200

300
Fast modes dynamics

-0.5

0.0

0.5

1.0

M. Bocquet EnKF Workshop 2022, organised by NORCE Energy, NERSC and Equinor 8 / 25



Model error learning with a 4D-Var Resolvent or tendency correction

Numerical illustration with the two-scale Lorenz system

▶ The non-corrected model is the one-scale Lorenz system.
▶ Noisy observations are assimilated using strong-constrained 4D-Var.
▶ Simple CNNs are trained using the 4D-Var analysis.
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▶ The tendencies corr. is more accurate than the resolvent corr., even with smaller NNs and less training
data.

▶ The tendencies corr. benefits from the interaction with the physical model.
▶ The resolvent corr. is highly penalised (in DA) by the assumption of linear growth of errors.
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Model error learning with a 4D-Var Online model error correction

Online model error correction

▶ So far, the model error has been learnt offline: the ML (or training) step first requires a long
analysis trajectory.

▶ We now investigate the possibility to perform online learning, i.e. improving the correction as
new observations become available.

▶ To do this, we use the formalism of DA to estimate both the state and the NN parameters:

J (p,x) =
1
2

∥∥x − xb
∥∥2

B−1
x

+
1
2

∥∥p − pb
∥∥2

B−1
p

+
1
2

L∑
k=0

∥∥yk − Hk ◦ Mk(p,x)
∥∥2

R−1
k

.

▶ For simplicity, we have neglected potential cross-covariance between state and NN
parameters in the prior.

▶ Information is flowing from one window to the next using the prior for the state xb and for
the NN parameters pb.

−→ This approach is very similar to classical parameter estimation in DA, and it can be seen as a
NN formulation of weak-constraint 4D-Var.
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Model error learning with a 4D-Var Illustrations on low-order models

Numerical illustration with the same two-scale Lorenz system

▶ We use the tendency correction approach, with the same simple CNN as before, and still using 4D-Var.
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▶ The online correction steadily improves the model.
▶ At some point, the online correction gets more accurate than the offline correction.
▶ Eventually, the improvement saturates. The analysis error is similar to that obtained with the true model!
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Model error learning with a 4D-Var Illustrations on low-order models

Online learning: towards an operational implementation with OOPS

▶ Development of a fortran NN library to interact with the fortran implementation of the forecast model.
▶ Interfacing the NN library with OOPS to estimate the NN parameters with DA.
▶ Simplifications of the NN correction:

▶ the correction is additive, and added after each integration step (close to tendency correction);
▶ the correction is computed independently for each atmospheric column3.
▶ the correction is computed at the start of the DA window and not updated during the window;
▶ in practice, it requires only small adjustments to the current WC 4D-Var already implemented.

▶ Demonstration with OOPS-QG with promising results, implementation with OOPS-IFS in progress.
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3[Bonavita et al. 2020]
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Online learning with a local EnKF

Online learning with a LEnKF: Augmented state vector

▶ So far, learning was based on variational techniques using all available data. Can one design a
sequential (online) ensemble scheme that progressively updates both the state and the model as
data are collected?

▶ In the following, we make the assumptions:
(i) autonomous and local dynamics,
(ii) homogeneous dynamics or heterogeneous dynamics, or mixed dynamics.

▶Parameters of the model:

p ∈ RNp [global parameters], q ∈ RNq [local parameters].

▶Augmented state formalism [Jazwinski 1970; Ruiz et al. 2013]:

z =

[
x
p
q

]
∈ RNz , with Nz = Nx +Np +Nq.

▶ Just a more ambitious parameter estimation problem!?
Yes! But we have to fill in several critical gaps of the parameter-estimation-via-EnKF literature.
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Online learning with a local EnKF

Online learning with a LEnKF: The problems

▶We use the augmented state formalism with local ensemble Kalman filters (EnKFs): LEnSRF
and LETKF, which are keys for scalability.

▶Adequacy and inadequacy between the main LEnKF classes and the estimation of local and
global parameters:

Table: Adequacy (green) and inadequacy (red) between LEnKF types and the estimation of local, global and
mixed parameters. CL refers to covariance localisation and DL refers to domain localisation.

LEnKF type Global parameters Local parameters Mixed set of parameters

LEnSRF (CL) well suited suited unclear
localisation in parameter space? numerically costly solution proposed here

LETKF (DL) only approximate4 well suited unclear
solution proposed here solution proposed here

▶Beware that nonlocal observations require CL!

4[Aksoy et al. 2006]
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Online learning with a local EnKF

Online learning with a LEnKF: The solutions

Table: Summary of the EnKF-ML family of algorithms

Inference problem Dom. Local. Cov. Local. Dom. + Cov. Local.
local obs. only numerically costly

State LETKF [Hunt et al. 2007] LEnSRF [Whitaker et al. 2002] L2EnSRF [Farchi et al. 2019]
State LETKF-ML [Bocquet et al. 2021] LEnSRF-ML [Bocquet et al. 2021] L2EnSRF-ML

+ global param. new implementation5 new implementation not discussed
State LETKF-HML LEnSRF-HML L2EnSRF-HML

+ global & local param. new algorithm new algorithm new algorithm

Main results

New EnKF update formula and new LEnSRF/LETKF algorithms with parameter estimation:
global parameters −→ LETKF-ML, LEnSRF-ML, L2EnSRF-ML,
global and local parameters −→ LETKF-HML, LEnSRF-HML, and L2EnSRF-HML.

5new implementations and new algorithms: [Malartic et al. 2022]
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Online learning with a local EnKF Focus on the unstable/neutral subspace

Focus on the augmented dynamics and its unstable subspace

▶Augmented dynamics (model persistence or Brownian motion):[
xk

pk

]
7→

[
Fk(xk,pk)

pk

]
▶Assuming (i) N0 is the dimension of the unstable neutral subspace of the reference dynamics,
(ii) Ne is the size of the ensemble, then, in order for the augmented global EnKF (EnKF-ML) to
be stable, we must have: Ne ⪆ N0 +Np + 1.
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Online learning with a local EnKF Focus on the LEnSRF-ML update and global parameters

Focus on the LEnSRF-ML update and global parameters

▶Covariance localisation in the augmented space:

Bxx = ρxx ◦
[

Xf
x
(

Xf
x
)⊤

]
, Bpx = ρpx ◦

[
Xf

p
(

Xf
x
)⊤

]
= B⊤

xp, Bpp = ρpp ◦
[

Xf
p
(

Xf
p
)⊤

]
.

▶The localisation matrix ρxx almost certainly makes Bxx positive definite.

▶The localisation matrix ρpx has to be uniform with respect to space because the parameters are
global. This yields6:

ρ =
[

ρxx 1xζ⊤
p

ζp1⊤
x ρpp

]
, (4)

where ζp ∈ RNp is a vector of tapering coefficients.

▶The positive definitness of ρ generates constraints on ζp. A sufficient condition for positive
definitness of ρ is:

∥ζp∥ ≤

√
λmin

p λmin
x

Nx
, (5)

where λmin
p , λmin

x are the smallest eigenvalues of ρpp,ρxx, respectively.

6[Ruckstuhl et al. 2018; Bocquet et al. 2021; Malartic et al. 2022]
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Online learning with a local EnKF Illustrations on low-order models

Numerical illustration on the inhomogeneous Lorenz96 model (L96i)

▶We use the LEnKF-HML on the L96i model, i.e. with unknown dynamics (global parameters)
and unknown inhomogeneous forcings (40 local parameters).
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Figure: Time-averaged state analysis RMSE as a function of the ensemble size with the LEnSRF-HML (in blue)
and the LETKF-HML (in yellow). For reference, the red line shows the scores obtained with the LETKF when
the model is known.
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Online learning with a local EnKF Illustrations on low-order models

Numerical illustration on the multi-layer L96 model (mL96)

▶The mL96 model7 is a vertical stack of Nv = 32 coupled (atmospheric) layers, each layer being
a L96 model with Nh = 40 variables. The total state dimension is hence Nx = Nh ×Nv = 1280,
and the model’s equations are :

dxv,h

dt
= (xv,h+1 − xv,h−2)xv,h−1 − xv,h + Fv,h + Γv+1,h − Γv,h, (6)

where xv,h is the h-th horizontal variable of the v-th vertical layer.

▶The h index applies periodically in {1, . . . , Nh}. The forcing term F is inhomogeneous; it is set
constant over each layer and decreases from F1,h = 8 for the bottom layer to FNv,h = 4 for the
top layer.

▶The last two terms correspond to the vertical coupling between adjacent layers, with

Γv,h ≜
{

xv,h − xv−1,h if 2 ≤ v ≤ Nv,
0 otherwise. (7)

▶We use the L2EnSRF-HML on the observations of mL96, with unknown dynamics (global
parameters) and unknown inhomogeneous forcings (local parameters).

7[Farchi et al. 2019]
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Online learning with a local EnKF Illustrations on low-order models

Numerical illustration on the multi-layer Lorenz96 model

▶Nonlocal radiance-like observations (averaging kernel for each of the 8 satellite channels
without (left panel) and with (right panel) normalisation.)
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▶Numerical results (RMSEs):

Inference problem N0 Algorithm Model Loc. Ne state RMSE

1: x ≈ 50 EnSRF mL96 ≥ 50 0.08
L2EnSRF mL96 ✓ ≥ 10 0.08

2: (x, a, fv, fh) ≈ 50 + 88 EnSRF-HML sur (a, fv, fh) ≥ 140 0.11
L2EnSRF-HML sur (a, fv, fh) ✓ 50 0.12
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Conclusions

Conclusions

▶Main messages:
Bayesian DA view on state and model estimation.
DA can address goals assigned to ML but with partial & noisy observations.
Online “WC” 4D-Var can be used to sequentially estimate both state and model.
Online EnKFs-ML can also be used to sequentially estimate both state and model.
Holes in the EnKF parameter estimation theory successfully filled in.
Successful on 1D and 2D low-order models (L96, L05III, L96i, mL96, OOPS QG).
Successful generalised algorithms that mix LA and DL, local and global paramters.

▶ In progress:
Application to the Marshall-Molteni 3-layer QG model on the sphere.
Application to the ERA5 and CMIP data (WeatherBench).
Application to the mighty ECMWF IFS.
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