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Learning Closure Model from Indirect Observation Data

Objective at a high level
We aim to learns closure modelMclosure : x 7→ y

I Example: strain–stress relation, relative permeability curve – also called
constitutive model or parameterization.

I Closure model can be algebraic relation or PDEs.

What does "indirect data" mean?
I We can directly learn from data {xi, yi}Ni=1 independent of the solver, if

such data y is available.
I However, typically we do not have direct data; rather, we have a physical

solverMphysics : y 7→ d that maps the output of the closure model y to an
observable quantity d (e.g., displacement or velocity field, saturation field)

I These fields can be further post-processed to obtain integral quantities e.g.,
max deformation, lift/drag, or oil production
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Machine Learning vs. Data Assimilation

I ML and DA have a lot of similarities:
I optimize a cost function to improve predictions by using observation data
I use (analytic or approximate) gradient-based optimization to find

state/parameters/model
I How to combine ML and DA for better predictions?

I DA respects the dynamic model more faithfully: physically consistent
predictions

I ML (neural networks) obtains analytic gradient (adjoint) more easily via
back-propagation



Ensemble
learning of

turbulence model

H. Xiao

Introduction

Data Assimilation

Unified Learning
from Sparse Data

Results

Reflection

Conclusion

5/29

RANS as Work-Horse tool for Turbulent Flow Simulations

I Turbulence is ubiquitous in natural and industrial flows (see examples below).
I RANS (Reynolds-Averaged Navier–Stokes) models are still the work-horse

tool in industrial computational fluid dynamics (CFD) applications.
I High-fidelity methods such as LES (large eddy simulation) and DNS (direct

numerical simulations) are still too expensive for practical flows.
I The drawback of RANS: poor performance in flows with separation, mean

pressure gradient, mean flow curvature . . . Need to quantify and reduce
model uncertainty.
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Source of Model Uncertainty in RANS Equations

I Incompressible Navier–Stokes equations:

∇ · u = 0

∂u

∂t
+ u · ∇u− ν∇2u +

1

ρ
∇p = 0

I Reynolds Decomposition: ui = Ui + u′i and p = P + p′

I Reynolds-Averaged Navier-Stokes Equations:

∇ ·U = 0

∂U

∂t
+ U · ∇U− ν∇2U +

1

ρ
∇P = ∇ · τ where τij = −u′iu′j

Reynolds stress τ as source of model uncertainty in RANS equations
∂τ

∂t
+ u · ∇τ −∇ · [(νt + ν)∇τ ] = P + Φ + E

We can derive a transport PDE for the Reynolds stress τ .
The PDE contains even more unclosed terms. −→ closure problem
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Data-Driven RANS Modeling Framework1

I Inject uncertainties in the Reynolds stress field: τ (x) =
∑

i ωiφi(x)

I Use sparse observation data y to reduce model uncertainties

EnKF Update

ωn+1 =

ωn + K(y −H[τ ])

K: Kalman gain
H: RANS solver
and observation
operator

Ensemble Kalman Filtering (EnKF)

1Xiao, Wu, Wang, Sun, Roy. Quantifying and reducing model-form uncertainties in RANS simulations:
A data-driven, physics-informed Bayesian approach. J. Comput. Phys., 115-136, 2016.



Ensemble
learning of

turbulence model

H. Xiao

Introduction

Data Assimilation

Unified Learning
from Sparse Data

Results

Reflection

Conclusion

7/29

Data-Driven RANS Modeling Framework1

I Inject uncertainties in the Reynolds stress field: τ (x) =
∑

i ωiφi(x)

I Use sparse observation data y to reduce model uncertainties

EnKF Update

ωn+1 =

ωn + K(y −H[τ ])

K: Kalman gain
H: RANS solver
and observation
operator

Ensemble Kalman Filtering (EnKF)

1Xiao, Wu, Wang, Sun, Roy. Quantifying and reducing model-form uncertainties in RANS simulations:
A data-driven, physics-informed Bayesian approach. J. Comput. Phys., 115-136, 2016.



Ensemble
learning of

turbulence model

H. Xiao

Introduction

Data Assimilation

Unified Learning
from Sparse Data

Results

Reflection

Conclusion

7/29

Data-Driven RANS Modeling Framework1

I Inject uncertainties in the Reynolds stress field: τ (x) =
∑

i ωiφi(x)

I Use sparse observation data y to reduce model uncertainties

EnKF Update

ωn+1 =

ωn + K(y −H[τ ])

K: Kalman gain
H: RANS solver
and observation
operator

Ensemble Kalman Filtering (EnKF)

1Xiao, Wu, Wang, Sun, Roy. Quantifying and reducing model-form uncertainties in RANS simulations:
A data-driven, physics-informed Bayesian approach. J. Comput. Phys., 115-136, 2016.



Ensemble
learning of

turbulence model

H. Xiao

Introduction

Data Assimilation

Unified Learning
from Sparse Data

Results

Reflection

Conclusion

8/29

Enforcing Physical Constraints in Reynolds Stress Representation

I τ is a symmetric tensor field with pointwise physical realizability constraints

τ = −2k

(
a

2
+

1

3
I

)
= −2k

(
VΛV> +

1

3
I

)

I Its magnitude and aspect ratio can be perturbed independently to ensure
realizability within Barycentric triangle (similar to Lumley triangle);
perturbing its orientations does not change its realizability.

τ −→ (k, ξ, η, ϕ1, ϕ2, ϕ3)
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Physics-Informed Parameterization of Reynolds Stress Field

I Model the perturbation of Reynolds stress anisotropy (ξ, η) fields as
Gaussian random fields with covariance kernel C (x,x′) and RANS
predictions ξrans as the mean, e.g.,:
ξ(x) ∼ GP(ξrans,C) with C

(
x,x′

)
= σ(x)σ

(
x′
)

exp
(
−‖x− x′‖2/`2

)

I The random fields are represented with Karhunen–Loève expansion:

δξ
(
x; θξ

)
=

∞∑

i=1

ωξi |θξφi(x) δη (x; θη) =

∞∑

i=1

ωηi |θηφi(x)

I The basis functions φi(x) are eigenmodes of covariance kernel C.

Physics-informed dimension reduction
We used prior knowledge to simplify a field inference τij(x) to random variables:

ω ≡
[
ωξ1, ω

η
1 , ω

ξ
2, ω

η
2 , . . . ,

]
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Case I: Flow Over Periodic Hills

Infer full velocity field from sparse data

I Observation data improves
full-field velocity predictions

I Injected uncertainties into
Reynolds stress anisotropy:
preserved realizability and
smoothness of τ (x);

I Do not modify the velocity
field directly: respect
divergence-free constraints.

samples sample mean baseline
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Case II: Secondary Flow in Turbulent Square Duct – Setup

I Flow along a square duct (e.g., in draft pipes, rivers): a classical challenging
test case for turbulence models.

I Features in-plane flows driven by normal Reynolds stress imbalance τyy − τzz
I Linear eddy viscosity models fail to predict mean flow due to lack of

anisotropy in Reynolds stress tensor

In-plane 
secondary flow

Main 

flo
w

Axis of
symmetry

  : Lines along which secondary 
flow velocities are shown in Fig.13.

(a)

(b)

(b)
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Inferred In-plane Velocities (Seconary Flows)

I Velocities are observed on one station y/h = 0.5 only.
I The observation data improved in-plane velocities in the whole field.

0 0.25 0.5 0.75 1
y/h; y/h+0.5Uy

0.0

0.2

0.4

0.6

0.8

1.0

z/
h

0 0.25 0.5 0.75 1
y/h; y/h+1/2Uz

0.0

0.2

0.4

0.6

0.8

1.0

z/
h

samples: sample mean:
baseline RANS: DNS:

Prior velocities scaled by a factor of 0.3 for clarity.
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Data Assimilation for Turbulent Flow Simulations – Summary

I We combine sparse observation and low-fidelity model to achieve predictive
capabilities.

I The physics-informed framework respect physics constraints of physical
variables: realizability, smoothness, convection physics . . .

Application scenarios of data assimilation:
Complement system monitoring (CFD + Sensors): one system only, with online
streamlined data from devices.

Need machine learning to learn underlying model from data
I Support design, analysis, and optimization
I With offline data; can be full-field data, on different but similar flows.
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Learning (Closure)-Model from Sparse, Indirect Observations

What if only sparse data such as
velocities (×) or drag, lift are available,
without Reynolds stresses!

U · ∇U− ν∇2U +
1

ρ
∇P = ∇ · τ

Unified Perspective to Adjoint, Data Assimilation and Machine Learning
All data-driven methods amounts to minimize the discrepancy J between model
predictiona ỹ = H(τ ) and observation data y:
I Adjoint optimization (parameter tuning): find the parameters β in the

turbulence models, so as to minimize the discrepancy J = ‖y −H[β]‖2
I Data assimilation: find the Reynolds stress field τ (x) to minimize the

discrepancy J = ‖y −H[τ (x)]‖2
I Machine learning: find the turbulence model τ = gnn(∇U ;w) represented

by a neural network w to minimize J = ‖y −H[w]‖2

aOperator H : τ 7→ ỹ is a composition of RANS solver and observation operator
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Deep Learning of Turbulence Model from Sparse Data2

I Sensitivity of J w.r.t. Reynolds stress τ is obtained as gradient of adjoint
velocity: ∂J

∂τ = −∇û , where û is solved from continuous adjoint:

u · ∇û+∇û · u+ ν∇2û−∇p̂ =
∂J

∂u

I Adjoint based optimization. Gradient via chain rule: ∂J
∂w = ∂J

∂τ
∂τ
∂w

∂J

∂w
=
∂J

∂τ

∂τ

∂w

∂τ
∂w : auto-diff

∂J

∂τ
= −∇û

Turbulence model

w

✓ g

⌧ (S,⌦) =
P

i g
(i)
nn [✓; w] T(i)

Neural network

Back propagation

⌧

r · u = 0

u · ru � ⌫r2u + r · ⌧ + rp = 0

observation: ŷ = H(u, p)

objective: J = ky � ŷk2

RANS solver + post-processing

PDEs

Adjoint
PDE solver

@J
@w

Jw ⌧ J

@J/@⌧
@⌧/@w

2Michelén-Ströfer, Xiao. End-to-end differentiable learning of turbulence models from indirect
observations. Theo. Appl. Mech. Lett. 11(4), 100280, 2021.
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EnKF Learning of Turbulence Model from Sparse Data3

I EnKF is non-intrusive to the RANS solver: only requires an ensemble of
forward simulations and not adjoint.

I Use analysis to update NN weights: ωn+1 = ωn + K(y −H[τ ])

3Zhang, Xiao, Luo, He. Ensemble Kalman method for learning turbulence models from indirect
observation data. Submitted to J. Fluid Mech. arXiv:2202.05122

https://arxiv.org/abs/2202.05122
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Square Duct – Learn Turbulence Model from Velocity

I Flow along a square duct
I Used Shih quadratic model as the synthetic truth

In-plane 
secondary flow

Main 

flo
w

Axis of
symmetry

  : Lines along which secondary 
flow velocities are shown in Fig.13.

(a)

(b)

(b)



Ensemble
learning of

turbulence model

H. Xiao

Introduction

Data Assimilation

Unified Learning
from Sparse Data

Results

Reflection

Conclusion

18/29

Learned Shih Quadratic Model from Synthetic Velocities

Shih model (cast into Pope’s formulation)

g1(θ1, θ2) =
−2/3

1.25 +
√

2θ1 + 0.9
√

2θ2
g2(θ1, θ2) =

7.5

1000 + (
√

2θ1)3

0 5
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g
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Learned Shih Quadratic Model from Synthetic Velocities

Remarks
I Only a linear combination g(2) − 0.5g(3) + 0.5g(4) is informed by the in-plane

velocities and thus can be learned
I The velocity is not sensitive to the Reynolds stresses in the duct center

(small θ1), so this part in parameter space is not learned well.

0 2 4 6 8

θ1

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

g
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Performance Comparison: NN+Adjoint v.s. Ensemble Learning

I Learned nonlinear eddy viscosity model: τ (S,Ω) =
∑

i g
(i)
nn [θ;w] T(i)

I Almost identical results between NN+adjoint and EnKF.
u ⌧xy ⌧yz ⌧yy � ⌧zz

gr
ou

n
d

tr
u
th

ad
jo

in
t-

b
as

ed
en

se
m

b
le

-b
as

ed

Figure 4: Comparison of velocity and Reynolds stress results among the ground truth, the adjoint-based learned model, and

the ensemble-based learned model for square duct case. The contour shows the in-plane (1000 ⇥ uy) velocities.

On the contrary, the ensemble-based method is e�cient to obtain comparable reconstruction results within

6 hours. That is largelylxlikely due to the use oflx Hessian information and the covariance inflation factor

�lx, which adjustsadjustlx the relativelx weight of the cost function to accelerate the convergence speedlx.

Table 3: Comparison between adjoint-based and ensemble-based learning

method error(u) error(⌧ ) total steps wall time

adjoint-based 0.102% 4.51% 1000 133 hours

ensemble-based 0.465% 5.76% 50 6 hours

The contour plots of the scalar invariant ✓1 and |✓1| � |✓2| are presented in Figure. 5. The predicted

scalar invariant with the learned model agrees well with the ground truth. The di↵erence between the initial

and the truth is mainly due to the in-plane secondary flow which cannotcan notlx be captured by the linear

eddy viscosity model. With the learned modelsmodellx, the flow field in y-z plane is well reconstructed,

which further improvesimprovelx the estimate of the scalar invariant. It is observed that slight di↵erences

exist around the duct center. In that region, there are mainly small valuesthere is mainly the small valuelx

of the scalar invariant ✓, due to the negligible stream-wise velocity gradient. Additionally, we provide

the predicted scalar invariant compared to the ground truth, whichclearly showsshows clearlylx the good

15
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Computational Cost: NN+Adjoint v.s. Ensemble Learning

I Most CPU time is spend on the RANS solver.
I RANS simulations in the ensemble method is parallel: 60 sampels on 60

cores.
I The faster convergence of the ensemble method is due to the use of Hessian

and covariance inflation.

Comparison of computational costs (for square duct flow)

Ensemble Method NN + Adjoint
CPU time/step 8.3 min 7.2 min
Steps to converge 50 1000
Wall time 6 h 133 h
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Ensemble Learning of Flow Over Periodic Hills: Extrapolation

A nonlinear eddy viscosity model learned with EnKF:
I Trained with velocity data (4 stations) from a periodic hill of slope 1.0
I Tested on α = 0.5, 0.8 (left), 1.2, and 1.5 (right).
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Training with Only Lift Coefficient

I Train model with integral data (lift coefficient) only
I Data from two flow conditions are used: angle of attack (AoA) 8◦

(attached) and 14◦ (separated)
I Improved estimation of lift force (Cl) and pressure distribution (Cp) by

tuning the turbulence model

k–ω Learned Experiment
Cl (AoA=14◦) 1.25 1.07 1.05
Cl (AOA=8◦) 0.97 0.94 0.95



Ensemble
learning of

turbulence model

H. Xiao

Introduction

Data Assimilation

Unified Learning
from Sparse Data

Results

Reflection

Conclusion

24/29

Generalize to Different Flow Conditions (AoA)

I Improved preditions in the lift coefficient in all conditions (AoA ∈ [1◦, 18◦])
I Recall that the model was trained on two AoAs (8◦ and 14◦)
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Can We Utilize (Free) Analytic Gradient of the Neural Network?

I The analytic gradient of the neural network ∂τ/∂w is not used!
I However, such gradient can be useful when we have both direct data

(Reynolds stress) and indirect data (velocity, lift coefficient)
I Incorporate direct data as a regularization term in the cost function4

Learning from both direct and indirect data
I Cost function of regularized EnKF:

J =‖ wa − wf ‖2P + ‖ UDNS −H[wf] ‖2R + ‖ τDNS − G[wf] ‖2Q
I Update scheme of regularized EnKF:

w̃ = wf − PG′Q−1(τDNS − G[wf]);

wa = w̃ + PH>(HPH> + R)−1(UDNS
j −H[w̃]).

4Zhang, Michelén-Ströfer, Xiao. Regularized ensemble Kalman methods for inverse problems. J.
Comput. Phys., 416, 109517, 2020.
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Joint Training with Direct and Indirect Data – Reconstruction

I Use indirect and direct data, but only at sparse locations (×)
I Combination of the two data sources enhances the reconstruction of velocity

and Reynolds stresses: reduces ill-conditioning.
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Joint Training with Direct and Indirect Data – Generalization

I Generlizable to different aspect ratios
I Provides improved predictions of velocities and Reynolds stresses
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Conclusion

I Combined data assimilation, adjoint, and machine learning to learn
turbulence models.

I Ensemble learning method is competitive compared to fully adjoint models.
I In the context of learning closure models from both indirect and direct data,

this approach can have significant merits.
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