H. Xiao

Introduction

Data Assimilation

Unified Learning from Sparse Data

Results

Reflection

Conclusion

Ensemble Kalman method for learning turbulence models from indirect observation data

Xinlei Zhang¹, Heng Xiao², Xiaodong Luo³, Guowei He¹

 1 Institute of Mechanics, Chinese Academy of Sciences, China 2 Department of Aerospace and Ocean Engineering, Virginia Tech, USA 3 Norwegian Research Centre (NORCE), Norway

EnKF Workshop, Balestrand, Norway June 1, 2022

KEVIN T. CROFTON DEPARTMENT OF AEROSPACE AND OCEAN ENGINEERING VIRGINIA TECHTM

H. Xiao

Introduction

- **Data Assimilation**
- Unified Learning from Sparse Data
- Results
- Reflection
- Conclusion

Outline

- 1. Introduction
- 2. Data Assimilation: Field Inversion from Sparse Data
- 3. Unified Perspective (DA & ML) to Learn Models from Sparse Data
- 4. Results
- 5. Reflection
- 6. Conclusion

H. Xiao

Introduction

Data Assimilation

Unified Learning from Sparse Data

Results

Reflection

Conclusion

Learning Closure Model from Indirect Observation Data

Objective at a high level

We aim to learns closure model $\mathcal{M}_{\mathsf{closure}}: x \mapsto y$

- Example: strain-stress relation, relative permeability curve also called constitutive model or parameterization.
- Closure model can be algebraic relation or PDEs.

What does "indirect data" mean?

- We can directly learn from data $\{x_i, y_i\}_{i=1}^N$ independent of the solver, if such data y is available.
- ► However, typically we do not have direct data; rather, we have a physical solver M_{physics} : y → d that maps the output of the closure model y to an observable quantity d (e.g., displacement or velocity field, saturation field)
- These fields can be further post-processed to obtain integral quantities e.g., max deformation, lift/drag, or oil production

H. Xiao

Introduction

- **Data Assimilation**
- Unified Learning from Sparse Data
- Results
- Reflection
- Conclusion

Machine Learning vs. Data Assimilation

- ML and DA have a lot of similarities:
 - optimize a cost function to improve predictions by using observation data
 - use (analytic or approximate) gradient-based optimization to find state/parameters/model
- How to combine ML and DA for better predictions?
 - DA respects the dynamic model more faithfully: physically consistent predictions
 - ML (neural networks) obtains analytic gradient (adjoint) more easily via back-propagation

H. Xiao

Introduction

- **Data Assimilation**
- Unified Learning from Sparse Data
- Results
- Reflection
- Conclusion

RANS as Work-Horse tool for Turbulent Flow Simulations

- Turbulence is ubiquitous in natural and industrial flows (see examples below).
- RANS (Reynolds-Averaged Navier–Stokes) models are still the work-horse tool in industrial computational fluid dynamics (CFD) applications.
- High-fidelity methods such as LES (large eddy simulation) and DNS (direct numerical simulations) are still too expensive for practical flows.
- The drawback of RANS: poor performance in flows with separation, mean pressure gradient, mean flow curvature ... Need to quantify and reduce model uncertainty.

H. Xiao

Introduction

Data Assimilation

Unified Learning from Sparse Data

Results

Reflection

Conclusion

Source of Model Uncertainty in RANS Equations

Incompressible Navier–Stokes equations:

$$\nabla \cdot \mathbf{u} = 0$$
$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} - \nu \nabla^2 \mathbf{u} + \frac{1}{\rho} \nabla p = 0$$

 \cap

H. Xiao

Introduction

- **Data Assimilation**
- Unified Learning from Sparse Data

Results

Reflection

Conclusion

Source of Model Uncertainty in RANS Equations

Incompressible Navier–Stokes equations:

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} - \nu \nabla^2 \mathbf{u} + \frac{1}{\rho} \nabla p = 0$$

 $\nabla \cdot \mathbf{u} = 0$

▶ Reynolds Decomposition: $u_i = U_i + u'_i$ and p = P + p'

H. Xiao

Introduction

- **Data Assimilation**
- Unified Learning from Sparse Data
- Results
- Reflection
- Conclusion

Source of Model Uncertainty in RANS Equations

Incompressible Navier–Stokes equations:

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} - \nu \nabla^2 \mathbf{u} + \frac{1}{\rho} \nabla p = 0$$

 $\nabla \cdot \mathbf{u} = 0$

- ▶ Reynolds Decomposition: $u_i = U_i + u'_i$ and p = P + p'
- Reynolds-Averaged Navier-Stokes Equations:

$$\nabla \cdot \mathbf{U} = 0$$
$$\frac{\partial \mathbf{U}}{\partial t} + \mathbf{U} \cdot \nabla \mathbf{U} - \nu \nabla^2 \mathbf{U} + \frac{1}{\rho} \nabla P = \nabla \cdot \boldsymbol{\tau} \quad \text{where } \boldsymbol{\tau}_{ij} = -\overline{u'_i u'_j}$$

H. Xiao

Introduction

- **Data Assimilation**
- Unified Learning from Sparse Data
- Results
- Reflection
- Conclusion

Source of Model Uncertainty in RANS Equations

Incompressible Navier–Stokes equations:

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} - \nu \nabla^2 \mathbf{u} + \frac{1}{\rho} \nabla p = 0$$

 $\nabla \cdot \mathbf{u} = 0$

- ▶ Reynolds Decomposition: $u_i = U_i + u'_i$ and p = P + p'
- Reynolds-Averaged Navier-Stokes Equations:

$$\nabla \cdot \mathbf{U} = 0$$
$$\frac{\partial \mathbf{U}}{\partial t} + \mathbf{U} \cdot \nabla \mathbf{U} - \nu \nabla^2 \mathbf{U} + \frac{1}{\rho} \nabla P = \nabla \cdot \boldsymbol{\tau} \quad \text{where } \boldsymbol{\tau}_{ij} = -\overline{u'_i u'_j}$$

Reynolds stress au as source of model uncertainty in RANS equations

$$\frac{\partial \boldsymbol{\tau}}{\partial t} + \mathbf{u} \cdot \nabla \boldsymbol{\tau} - \nabla \cdot \left[(\nu_t + \nu) \nabla \boldsymbol{\tau} \right] = \mathsf{P} + \boldsymbol{\Phi} + \mathsf{E}$$

ullet We can derive a transport PDE for the Reynolds stress au .

 \bigcirc The PDE contains even more unclosed terms. \longrightarrow closure problem

H. Xiao

Introduction

Data Assimilation

Unified Learning from Sparse Data

Results

Reflection

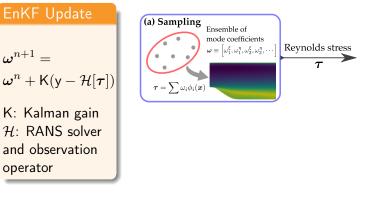
Conclusion

Data-Driven RANS Modeling Framework 1

▶ Inject uncertainties in the Reynolds stress field: $m{ au}(m{x}) = \sum_i \omega_i \phi_i(m{x})$

Use sparse observation data y to reduce model uncertainties

Ensemble Kalman Filtering (EnKF)



¹Xiao, Wu, Wang, Sun, Roy. Quantifying and reducing model-form uncertainties in RANS simulations: A data-driven, physics-informed Bayesian approach. *J. Comput. Phys.*, 115-136, 2016.

H. Xiao

Introduction

Data Assimilation

Unified Learning from Sparse Data

Results

Reflection

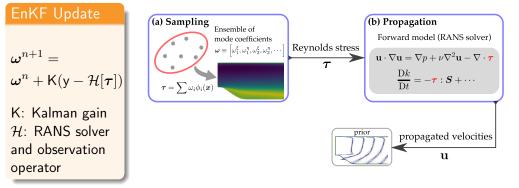
Conclusion

Data-Driven RANS Modeling Framework¹

▶ Inject uncertainties in the Reynolds stress field: $m{ au}(m{x}) = \sum_i \omega_i \phi_i(m{x})$

Use sparse observation data y to reduce model uncertainties

Ensemble Kalman Filtering (EnKF)



¹Xiao, Wu, Wang, Sun, Roy. Quantifying and reducing model-form uncertainties in RANS simulations: A data-driven, physics-informed Bayesian approach. *J. Comput. Phys.*, 115-136, 2016.

H. Xiao

Introduction

Data Assimilation

Unified Learning from Sparse Data

Results

Reflection

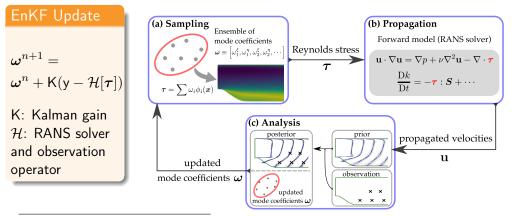
Conclusion

Data-Driven RANS Modeling Framework 1

Inject uncertainties in the Reynolds stress field: $au(m{x}) = \sum_i \omega_i \phi_i(m{x})$

Use sparse observation data y to reduce model uncertainties

Ensemble Kalman Filtering (EnKF)



¹Xiao, Wu, Wang, Sun, Roy. Quantifying and reducing model-form uncertainties in RANS simulations: A data-driven, physics-informed Bayesian approach. *J. Comput. Phys.*, 115-136, 2016.

H. Xiao

Introduction

- **Data Assimilation**
- Unified Learning from Sparse Data
- Results
- Reflection
- Conclusion

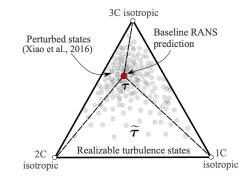
Enforcing Physical Constraints in Reynolds Stress Representation

ightarrow au is a symmetric tensor field with *pointwise* physical realizability constraints

$$\boldsymbol{\tau} = -2k\left(\frac{\mathbf{a}}{2} + \frac{1}{3}\mathbf{I}\right) = -2k\left(\mathbf{V}\Lambda\mathbf{V}^{\top} + \frac{1}{3}\mathbf{I}\right)$$

Its magnitude and aspect ratio can be perturbed independently to ensure realizability within Barycentric triangle (similar to Lumley triangle); perturbing its orientations does not change its realizability.

 $\boldsymbol{\tau} \longrightarrow (k, \boldsymbol{\xi}, \boldsymbol{\eta}, \varphi_1, \varphi_2, \varphi_3)$



H. Xiao

Introduction

Data Assimilation

- Unified Learning from Sparse Data
- Results
- Reflection
- Conclusion

Physics-Informed Parameterization of Reynolds Stress Field

Model the perturbation of Reynolds stress anisotropy (ξ, η) fields as Gaussian random fields with covariance kernel C (x, x') and RANS predictions ξ^{rans} as the mean, e.g.,:

 $\xi(\boldsymbol{x}) \sim \mathcal{GP}(\xi^{\mathsf{rans}},\mathsf{C}) \quad \text{with } \mathsf{C}\left(\boldsymbol{x},\boldsymbol{x}'\right) = \sigma(\boldsymbol{x})\sigma\left(\boldsymbol{x}'\right)\exp\left(-\|\boldsymbol{x}-\boldsymbol{x}'\|^2/\ell^2\right)$

• The random fields are represented with Karhunen–Loève expansion: $\delta^{\xi} \left(\boldsymbol{x}; \theta^{\xi} \right) = \sum_{i=1}^{\infty} \omega_{i}^{\xi} |_{\theta^{\xi}} \phi_{i}(\boldsymbol{x}) \qquad \delta^{\eta} \left(\boldsymbol{x}; \theta^{\eta} \right) = \sum_{i=1}^{\infty} \omega_{i}^{\eta} |_{\theta^{\eta}} \phi_{i}(\boldsymbol{x})$

(b) mode 2

(c) mode 3

(d) mode 4

Physics-informed dimension reduction

(a) mode 1

We used prior knowledge to simplify a field inference $au_{ij}({m x})$ to random variables:

$$oldsymbol{\omega}\equiv\left[\omega_1^{\xi},\omega_1^{\eta},\omega_2^{\xi},\omega_2^{\eta},\ldots,
ight]$$

H. Xiao

Introduction

Data Assimilation

Unified Learning from Sparse Data

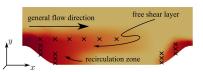
Results

Reflection

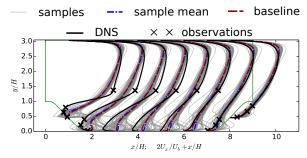
Conclusion

Case I: Flow Over Periodic Hills

Infer full velocity field from sparse data



- Observation data improves full-field velocity predictions
- Injected uncertainties into Reynolds stress anisotropy: preserved realizability and smoothness of \u03c6(x);
- Do not modify the velocity field directly: respect divergence-free constraints.



H. Xiao

Introduction

Data Assimilation

Unified Learning from Sparse Data

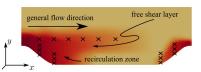
Results

Reflection

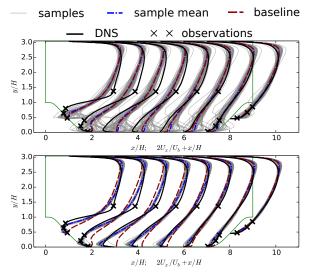
Conclusion

Case I: Flow Over Periodic Hills

Infer full velocity field from sparse data



- Observation data improves full-field velocity predictions
- Injected uncertainties into Reynolds stress anisotropy: preserved realizability and smoothness of \u03c6(x);
- Do not modify the velocity field directly: respect divergence-free constraints.

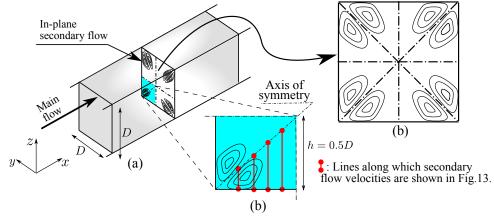


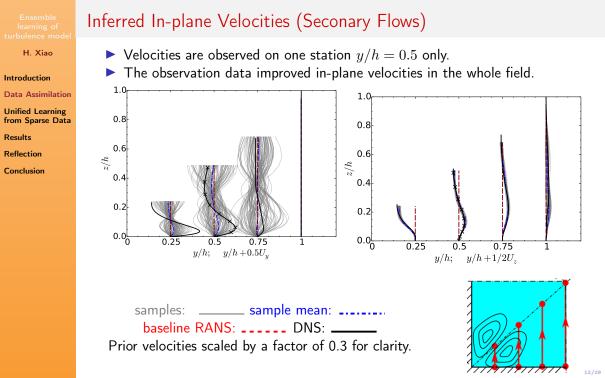
H. Xiao

- Introduction
- **Data Assimilation**
- Unified Learning from Sparse Data
- Results
- Reflection
- Conclusion

Case II: Secondary Flow in Turbulent Square Duct – Setup

- Flow along a square duct (e.g., in draft pipes, rivers): a classical challenging test case for turbulence models.
- Features in-plane flows driven by normal Reynolds stress imbalance $au_{yy} au_{zz}$
- Linear eddy viscosity models fail to predict mean flow due to lack of anisotropy in Reynolds stress tensor





H. Xiao

Introduction

- **Data Assimilation**
- Unified Learning from Sparse Data
- Results
- Reflection
- Conclusion

Data Assimilation for Turbulent Flow Simulations – Summary

- We combine sparse observation and low-fidelity model to achieve predictive capabilities.
- The physics-informed framework respect physics constraints of physical variables: realizability, smoothness, convection physics ...

Application scenarios of data assimilation:

Complement system monitoring (CFD + Sensors): *one system only*, with online streamlined data from devices.

Need machine learning to learn underlying model from data

- Support design, analysis, and optimization
- ▶ With offline data; can be full-field data, on different but similar flows.

H. Xiao

Introduction

Data Assimilation

Unified Learning from Sparse Data

Results

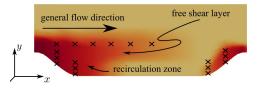
Reflection

Conclusion

Learning (Closure)-Model from Sparse, Indirect Observations

What if only sparse data such as velocities (\times) or drag, lift are available, without Reynolds stresses!

$$\mathbf{U} \cdot \nabla \mathbf{U} - \nu \nabla^2 \mathbf{U} + \frac{1}{\rho} \nabla P = \nabla \cdot \boldsymbol{\tau}$$



H. Xiao

Introduction

Data Assimilation

Unified Learning from Sparse Data

Results

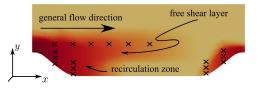
Reflection

Conclusion

Learning (Closure)-Model from Sparse, Indirect Observations

What if only sparse data such as velocities (×) or drag, lift are available, without Reynolds stresses!

$$\mathbf{U} \cdot \nabla \mathbf{U} - \nu \nabla^2 \mathbf{U} + \frac{1}{\rho} \nabla P = \nabla \cdot \boldsymbol{\tau}$$



Unified Perspective to Adjoint, Data Assimilation and Machine Learning

All data-driven methods amounts to minimize the discrepancy J between model prediction^a $\tilde{y} = \mathcal{H}(\boldsymbol{\tau})$ and observation data y:

- Adjoint optimization (parameter tuning): find the parameters β in the turbulence models, so as to minimize the discrepancy J = ||y H[β]||²
- ▶ Data assimilation: find the Reynolds stress field \(\tau(x)\) to minimize the discrepancy \(J = ||y \mathcal{H}[\(\tau(x))]||^2\)
- Machine learning: find the turbulence model *τ* = g_{nn}(∇U; *w*) represented by a neural network *w* to minimize J = ||y − H[*w*]||²

^aOperator $\mathcal{H}: \boldsymbol{\tau} \mapsto \tilde{y}$ is a composition of RANS solver and observation operator

H. Xiao

Introduction

Data Assimilation

Unified Learning from Sparse Data

Results

Reflection

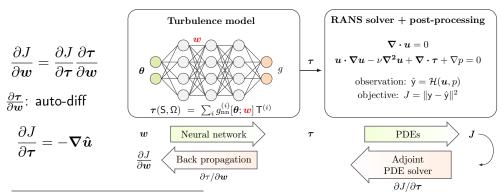
Conclusion

Deep Learning of Turbulence Model from Sparse Data²

Sensitivity of J w.r.t. Reynolds stress τ is obtained as gradient of adjoint velocity: $\frac{\partial J}{\partial \tau} = -\nabla \hat{u}$, where \hat{u} is solved from continuous adjoint:

$$oldsymbol{u} \cdot oldsymbol{
abla} \hat{oldsymbol{u}} + oldsymbol{
abla} \hat{oldsymbol{u}} \cdot oldsymbol{u} +
u oldsymbol{
abla}^2 \hat{oldsymbol{u}} -
abla \hat{oldsymbol{p}} = rac{\partial J}{\partial oldsymbol{u}}$$

► Adjoint based optimization. Gradient via chain rule: $\frac{\partial J}{\partial w} = \frac{\partial J}{\partial \tau} \frac{\partial \tau}{\partial w}$



²Michelén-Ströfer, Xiao. End-to-end differentiable learning of turbulence models from indirect observations. *Theo. Appl. Mech. Lett.* 11(4), 100280, 2021.

H. Xiao

Introduction

Data Assimilation

Unified Learning from Sparse Data

Results

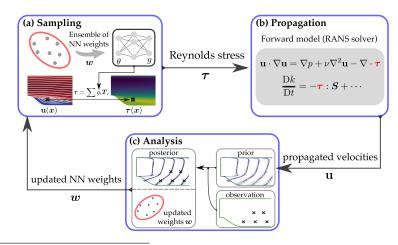
Reflection

Conclusion

EnKF Learning of Turbulence Model from Sparse Data³

 EnKF is non-intrusive to the RANS solver: only requires an ensemble of forward simulations and not adjoint.

▶ Use analysis to update NN weights: $\omega^{n+1} = \omega^n + K(y - \mathcal{H}[\tau])$



³Zhang, Xiao, Luo, He. Ensemble Kalman method for learning turbulence models from indirect observation data. Submitted to *J. Fluid Mech.* arXiv:2202.05122

H. Xiao

Introduction

Data Assimilation

Unified Learning from Sparse Data

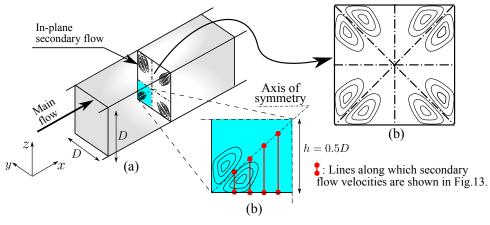
Results

Reflection

Conclusion

Square Duct - Learn Turbulence Model from Velocity

- Flow along a square duct
- Used Shih quadratic model as the synthetic truth



H. Xiao

Introduction

Data Assimilation

Unified Learning from Sparse Data

Results

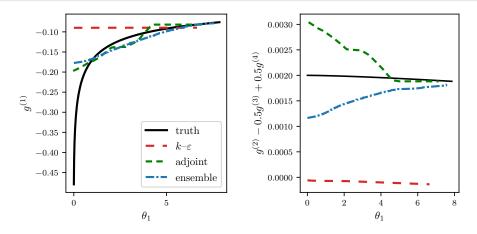
Reflection

Conclusion

Learned Shih Quadratic Model from Synthetic Velocities

Shih model (cast into Pope's formulation)

$$g_1(\theta_1, \theta_2) = \frac{-2/3}{1.25 + \sqrt{2\theta_1} + 0.9\sqrt{2\theta_2}} \qquad g_2(\theta_1, \theta_2) = \frac{7.5}{1000 + (\sqrt{2\theta_1})^3}$$



H. Xiao

Introduction

Data Assimilation

Unified Learning from Sparse Data

Results

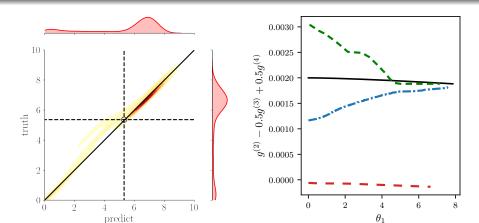
Reflection

Conclusion

Learned Shih Quadratic Model from Synthetic Velocities

Remarks

- Only a linear combination $g^{(2)} 0.5g^{(3)} + 0.5g^{(4)}$ is informed by the in-plane velocities and thus can be learned
- The velocity is not sensitive to the Reynolds stresses in the duct center (small θ₁), so this part in parameter space is not learned well.



19/29

H. Xiao

Introduction

Data Assimilation

Unified Learning from Sparse Data

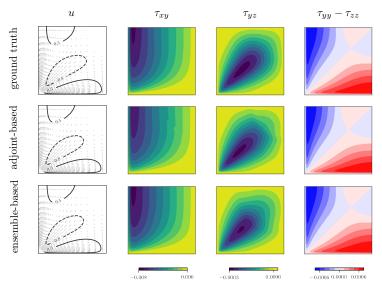
Results

Reflection

Conclusion

Performance Comparison: NN+Adjoint v.s. Ensemble Learning

- Learned nonlinear eddy viscosity model: $\tau(S, \Omega) = \sum_{i} g_{nn}^{(i)}[\theta; w] T^{(i)}$
- Almost identical results between NN+adjoint and EnKF.



H. Xiao

- Introduction
- **Data Assimilation**
- Unified Learning from Sparse Data
- Results
- Reflection
- Conclusion

Computational Cost: NN+Adjoint v.s. Ensemble Learning

- Most CPU time is spend on the RANS solver.
- RANS simulations in the ensemble method is parallel: 60 sampels on 60 cores.
- The faster convergence of the ensemble method is due to the use of Hessian and covariance inflation.

Comparison of computational costs (for square duct flow)

	Ensemble Method	NN + Adjoint
CPU time/step	8.3 min	7.2 min
Steps to converge	50	1000
Wall time	6 h	133 h

H. Xiao

Introduction

Data Assimilation

Unified Learning from Sparse Data

H/h

Results

Reflection

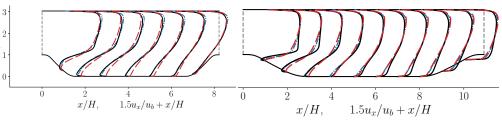
Conclusion

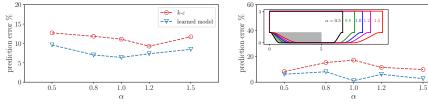
Ensemble Learning of Flow Over Periodic Hills: Extrapolation

A nonlinear eddy viscosity model learned with EnKF:

▶ Trained with velocity data (4 stations) from a periodic hill of slope 1.0

• Tested on $\alpha = 0.5$, 0.8 (left), 1.2, and 1.5 (right).





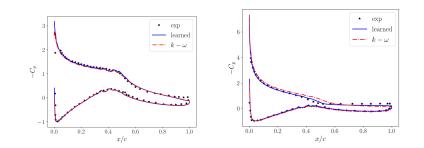
H. Xiao

- Introduction
- Data Assimilation
- Unified Learning from Sparse Data
- Results
- Reflection
- Conclusion

Training with Only Lift Coefficient

- ► Train model with integral data (lift coefficient) only
- Data from two flow conditions are used: angle of attack (AoA) 8° (attached) and 14° (separated)
- Improved estimation of lift force (C_l) and pressure distribution (C_p) by tuning the turbulence model

	$k–\omega$	Learned	Experiment
C_l (AoA=14°)	1.25	1.07	1.05
C_l (AOA=8°)	0.97	0.94	0.95



H. Xiao

Introduction

Data Assimilation

Unified Learning from Sparse Data

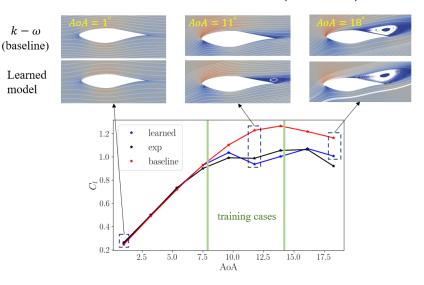
Results

Reflection

Conclusion

Generalize to Different Flow Conditions (AoA)

▶ Improved preditions in the lift coefficient in all conditions (AoA ∈ [1°, 18°])
 ▶ Recall that the model was trained on two AoAs (8° and 14°)



H. Xiao

- Introduction
- Data Assimilation
- Unified Learning from Sparse Data
- Results
- Reflection
- Conclusion

Can We Utilize (Free) Analytic Gradient of the Neural Network?

- The analytic gradient of the neural network $\partial \tau / \partial w$ is not used!
- However, such gradient can be useful when we have both direct data (Reynolds stress) and indirect data (velocity, lift coefficient)
- Incorporate direct data as a regularization term in the cost function⁴

Learning from both direct and indirect data

Cost function of regularized EnKF:

$$J = \parallel w^{\mathsf{a}} - w^{\mathsf{f}} \parallel_{\mathsf{P}}^{2} + \parallel U^{\mathsf{DNS}} - \mathcal{H}[w^{\mathsf{f}}] \parallel_{\mathsf{R}}^{2} + \parallel \tau^{\mathsf{DNS}} - \mathcal{G}[w^{\mathsf{f}}] \parallel_{\mathsf{G}}^{2}$$

Update scheme of regularized EnKF:

$$\begin{split} \tilde{w} &= w^{\mathsf{f}} - \mathsf{PG'Q}^{-1}(\tau^{\mathsf{DNS}} - \mathcal{G}[w^{\mathsf{f}}]); \\ w^{\mathsf{a}} &= \tilde{w} + \mathsf{PH}^{\top}(\mathsf{HPH}^{\top} + \mathsf{R})^{-1}(U_{j}^{\mathsf{DNS}} - \mathcal{H}[\tilde{w}]) \end{split}$$

⁴Zhang, Michelén-Ströfer, Xiao. Regularized ensemble Kalman methods for inverse problems. *J. Comput. Phys.*, 416, 109517, 2020.

H. Xiao

Introduction

Data Assimilation

Unified Learning from Sparse Data

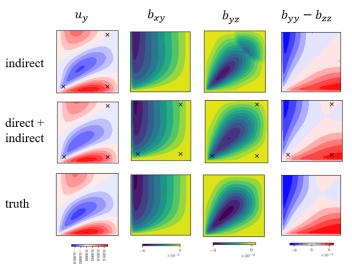
Results

Reflection

Conclusion

Joint Training with Direct and Indirect Data - Reconstruction

- \blacktriangleright Use indirect and direct data, but only at sparse locations ($\times)$
- Combination of the two data sources enhances the reconstruction of velocity and Reynolds stresses: reduces ill-conditioning.

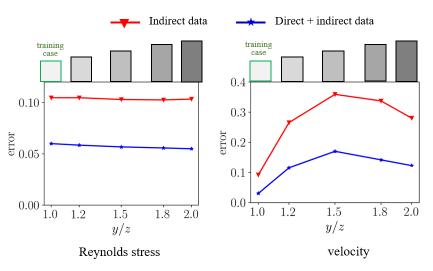


H. Xiao

- Introduction
- **Data Assimilation**
- Unified Learning from Sparse Data
- Results
- Reflection
- Conclusion

Joint Training with Direct and Indirect Data - Generalization

- Generlizable to different aspect ratios
- Provides improved predictions of velocities and Reynolds stresses

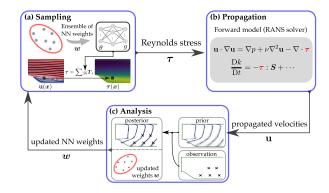


H. Xiao

- Introduction
- Data Assimilation
- Unified Learning from Sparse Data
- Results
- Reflection
- Conclusion

Conclusion

- Combined data assimilation, adjoint, and machine learning to learn turbulence models.
- Ensemble learning method is competitive compared to fully adjoint models.
- In the context of learning closure models from both indirect and direct data, this approach can have significant merits.



H. Xiao

Introduction

Data Assimilation

Unified Learning from Sparse Data

Results

Reflection

Conclusion

Reference

Details in the following preprint:

Zhang, Xiao, Luo, He. Ensemble Kalman method for learning turbulence models from indirect observation data. Submitted to *J. Fluid Mech.* arXiv:2202.05122