

Observability-Based Ensemble Initiation for the EnKF in History Matching Problems

Tarek Diaa-Eldeen, Carl Fredrik Berg, and Morten Hovd EnKF Workshop June 1 | Balestrand, Norway

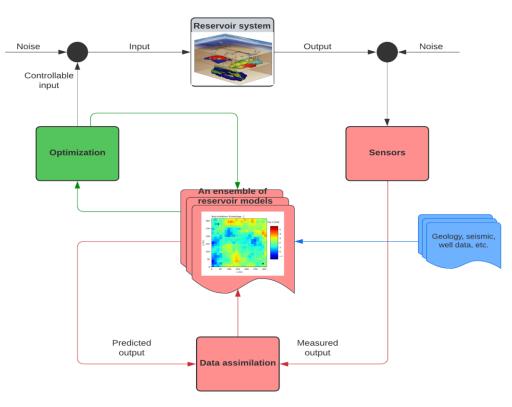
Presenter: Tarek Diaa-Eldeen PhD Candidate, NTNU

(tarek.diaa-eldeen@ntnu.no)

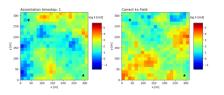
Motivation

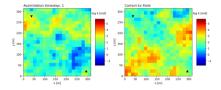
- Ensemble initiation is essential for the EnKF performance.
- Improvements can lead to significant economical benefits.
- Generating the initial ensemble in the high-observable directions.

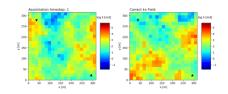
Closed Loop Reservoir Management (CLRM)

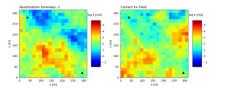


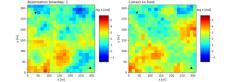
2D Reservoir Model Update using EnKF

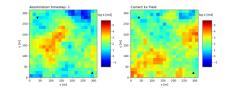


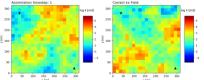


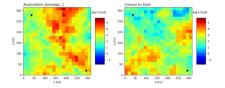


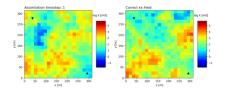












Observability-Aware EnKF: Main idea

- Sampling in directions that are strongly observable from the measured outputs.
- Two advantages: 1. Perturbations are orthogonal (reduces redundancy)
 2. In the high-observable directions.
- Challenges: 1. Observability analysis in multiphase heterogenous reservoirs.
 2. Computing sensitivities (with respect to states and parameters).

Problem Assumptions

- Model dynamics: $g(x_k, x_{k+1}, u_k) = 0$
- Observation model: $y_k = f(x_k, u_k)$
- States: $x = [S_w^T \ p_o^T]^T$
- Inputs: $u = [q_{inj} \ p_{BHP_{Prod}}]$
- Outputs: $y = [p_{BHP_{inj}} q_{w_{prod}} q_{o_{prod}}]$
- Initial conditions: $x_0 = \begin{bmatrix} S_{w_0}^T & p_{o_0}^T \end{bmatrix}^T$

Sensitivity calculations

- Balance equation (fully-implicit simulator)
- Total derivatives

$$f(x_{(i)}, x_k, u_k, m) = r_{(i)}$$

$$f(x_{k+1}, x_k, u_k, m) = 0$$

 $\delta r = 0 \Rightarrow \delta x_{k+1} = -M_1^{-1}M_2\delta x_k - M_1^{-1}M_3\delta u_k - M_1^{-1}M_4\delta m$

• Define a state-space model

$$\begin{split} \tilde{x}_k &= \begin{cases} x_k \\ m \end{cases} \in R^{N_x + N_m} & \tilde{x}_{k+1} = A \tilde{x}_k + B u_k \\ & A &= \begin{bmatrix} -M_1^{-1}M_2 & -M_1^{-1}M_4 \\ 0 & I \end{bmatrix} \\ & B &= \begin{bmatrix} -M_1^{-1}M_3 \\ 0 \end{bmatrix} \end{split}$$

Sensitivity calculations: continue

0

0 0 0 0

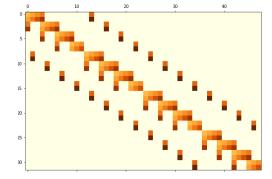
÷

0

0

0

 $\frac{\frac{\partial r_{w,0}}{\partial p_{o,1}}}{\frac{\partial r_{o,0}}{\partial p_{o,1}}}$ $\partial r_{w,0}$ $\partial r_{w,0}$ $\partial r_{w,0}$ $\partial r_{w,0}$ $\partial r_{w,0}$ $\partial s_{w,0}$ $\frac{\overline{\partial s_{w,1}}}{\partial s_{w,1}}$ $\partial s_{w,n_g}$ $\partial p_{o,n_g}$ $\partial p_{o,0}$ $\partial r_{o,0}$ $\partial r_{o,0}$ $\frac{\partial r_{o,0}}{\partial s_{w,1}}$ $\partial r_{o,0}$ $\partial r_{o,0}$. . . $\partial s_{w,n_g}$ $\overline{\partial p_{o,n_{\sigma}}}$ $\partial s_{w,0}$ $\partial p_{\alpha,0}$ 0 0 0 0 $M_1 =$ $\partial r_{w,n_g}$ $\frac{\partial r_{w,n_g}}{\partial p_{o,1}}$ $\partial r_{w,n_g}$ $\partial r_{w,n_g}$ $\partial r_{w,n_g}$ $\partial r_{w,n_g}$ $\partial s_{w,1}$. . . $\overline{\partial s_{w,n_g}}$ $\partial p_{o,n_g}$ $\partial s_{w,0}$ $\partial r_{w,b_{w_{inj1}}}$ $\partial p_{o,0}$ 0 $\partial r_{o,n_g}$ $\partial r_{o,n_g}$ $\partial r_{o,n_{\sigma}}$ $\partial r_{o,n_g}$ $\partial r_{o,n_g}$ $\partial q_{inj,b_{w_{inj}1}}$ $\partial r_{o,n_0}$ $\overline{\partial p_{o,n_g}}$ $\partial s_{w,0}$ $\partial p_{o,1}$ $\partial s_{w,1}$ $\partial s_{w,n_g}$ $\partial r_{o,bw_{inj1}}$ $\partial p_{o,0}$ 0 0 0 $\overline{\partial q_{inj,b_{w_{inj}1}}}$ ÷ $M_{3} =$ ÷ : $\partial r_{w,b_{w_{prodn}_{prod}}}$ 0 0 0 -0 $\overline{\partial p_{prod,bw}}_{prodn_{prod}}$ $\partial r_{o,b_{w_{prodn}_{prod}}}$ 0 0 0 0 $\overline{\partial p_{prod, b}}_{wprodn}_{prod}$



Sparsity pattern example of M4 for 4 x 4 model

Sensitivity calculations: continue

• The same for the output equation

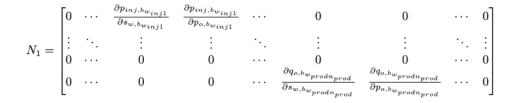
$$y_k(x_k, u_k, m) = 0.$$

$$y_k = C\tilde{x}_k + Du_k$$

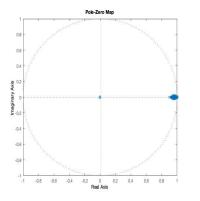
 Intrusive computation of derivatives using algorithmic differentation

$$C = \begin{bmatrix} N_1 & N_3 \end{bmatrix}$$

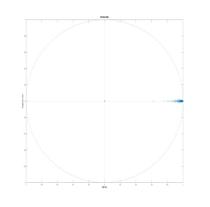
$$D = N_2$$



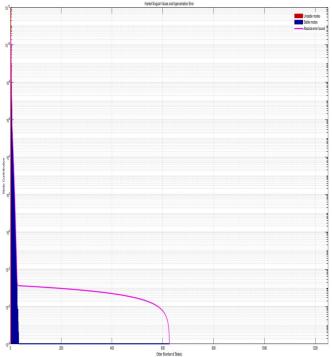
System Analysis: Poles/Zeros and HSV Plot with Absolute Error Bound



1. Poles/Zeros after 400 days



2. Poles/Zeros after 1200 days (after the water breakthrough)



Observability Analysis: Considerations

• Scale-independent observability analysis

• Correcting the dynamics for the different updating timestep

O

Observability matrix

$$\mathbf{V} = \begin{bmatrix} \breve{C} \\ \breve{C}\breve{A}_u \\ \breve{C}\breve{A}_u^2 \\ \vdots \\ \breve{C}\breve{A}_u^{n-1} \end{bmatrix}$$

 $\mathcal{O} = U\Sigma V^T$

 $\check{A} = TAT^{-1}$ $\check{C} = CT^{-1}$

 $egin{array}{c} egin{array}{ccc} egin{array}$

 $\breve{B} = TB$ $\breve{D} = D$

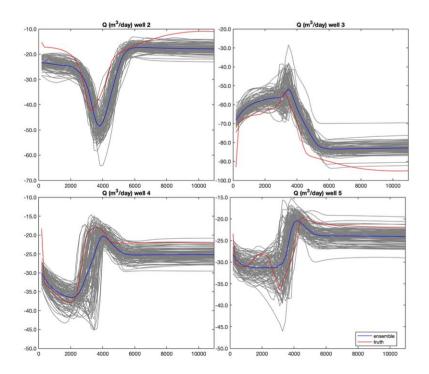
• Sampling in the high-observable directions

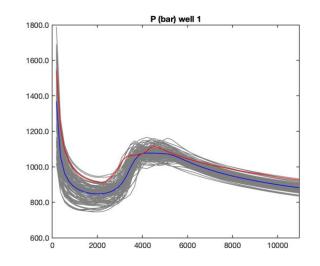
$$\hat{x}_j(t_0) = x_0 + \sqrt{\sigma_j} v_j$$

Observability-based Initiation

- This is implemented by normalizing the original initial ensemble matrix (the large ensemble) and premultiplying it by the observability matrix.
- Then, the ensemble members are selected such that they give the largest vector norm with respect to the original norm.

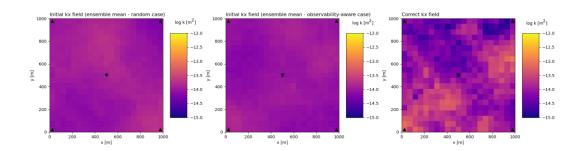
Observability-Aware EnKF: Results





Observability-Aware EnKF: Results

Seed	NRMSE
Shuffle 1	0.2391
Shuffle 2	0.1648
Shuffle 3	0.3242
Shuffle 4	0.1923
Shuffle 5	0.2510
Shuffle 6	0.1697
Shuffle 7	0.2311
Shuffle 8	0.1742
Shuffle 9	0.1629
Shuffle 10	0.3847
Mean	0.2294
Minimum	0.1648





NRMSE(Obs. aware EnKF) = 0.1477

EnRML (iES)

NRMSE(Obs. aware EnRML) = 0.2395

Seed	NRMSE
Shuffle 1	0.2443
Shuffle 2	0.2434
Shuffle 3	0.2442
Shuffle 4	0.2597
Shuffle 5	0.2486
Shuffle 6	0.2558
Shuffle 7	0.2524
Shuffle 8	0.2450
Shuffle 9	0.2615
Shuffle 10	0.2500
Shuffle 11	0.2463
Shuffle 12	0.2507

Conclusions and Future Work

- Ensemble initiation is essential for the EnKF performance.
- Using observability analysis to select the initial realizations can improve the performance.
- However, we selected the most observable ones, but may be they are not the most important directions in optimization.
- Observability-based localization?

