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Correlated noise framework

We consider the correlated noise framework of [BC09]

(S) dXt = B(Xt)dt + CdWt + C̃dVt

(O) dYt = HXtdt + dVt ,

Our goal: Compute/approximate the posterior

ηt := P ( Xt ∈ · | Y0:t ) .

Remark: Results can be generalized (colored observations noise,
time inhomogeneity, non-constant diffusion, nonlinear observations
etc.)



Ensemble Kalman-Bucy filter

For linear, Gaussian signals with uncorrelated observations (C̃ = 0)
the mean-field limit X̄ , adhering to

dX̄t = B
(
X̄t

)
dt + CdW̄t + P̄tH

T

(
dYt −

H
(
X̄t + m̄t

)
2

dt

)
m̄t := EYt

[
X̄t

]
, P̄t := CovYt

[
X̄t

]
,

of the EnKBF

dX i
t = B(X i

t )dt + CdW i
t + PM

t HT

(
dYt −

H
(
X i
t + xMt

)
2

dt

)

xMt :=
1

M

M∑
j=1

X j
t , PM

t :=
1

M

M∑
j=1

(
X j
t − xMt

)(
X j
t − xMt

)T
achieves consistency Law(X̄t) := η̄t = ηt .



Mean-field representations

Principle of EnKF: In the linear, Gaussian case the EnKF works
as follows:

1. find a mean-field process
(
X̄t

)
t≥0

such that for all t ≥ 0:

Law(X̄t) := η̄t = ηt (at least approximately)

2. approximate X̄ and its law/moments by an ensemble of
(interacting) particles.

Problem: How do we find/choose such a X̄?
=⇒ use Kushner–Stratonovich equation (KSE).

We follow [PRS20], which unified e.g. the filters in
[CX10],[YMM13]. Correlated observation noise also covered
[NRR21].



The Kushner–Stratonovich equation

Notation: For all suitable functions f let

▶ Lf :=
∑

i ,j

(CCT+C̃ C̃T)
ij

2 ∂xi∂xj f −
∑

i Bi∂xi f . . .generator of X ,

▶ ηt(f ) := E [ f (Xt) | Y0:t ].

Define the innovation process (It)t≥0 by

dIt = dYt − ηt(H)dt. (1)

The posterior η evolves according to the KSE

dηt = L∗ηtdt +
(
ηt (Hx − ηt(H))T −∇ ·

(
ηt C̃

))
dIt .



Why mean-field processes?

KSE is a nonlinear, nonlocal (S)PDE =⇒ represent the solution
via McKean–Vlasov SDE

This motivates the choice

dX̄t = B(X̄t)dt + CdW̄t + C̃dV̄t + a(X̄t , η̄t)dt + K (X̄t , η̄t)dYt ,

with

▶ i.i.d. copies W̄ and V̄ of W and V

▶ Law
(
X̄t | Y0:t

)
= η̄t



Different interpretation of η̄

Another way to define η̄ suitably is, that from now on, all integrals
(expectations, covariances, etc.) shall be computed from the joint
law of W̄ and V̄ . Thus for any (suitable) function f we have

η̄t(f ) :=

∫
f (X̄t) P

W̄ (dw̄)PV̄ (dv̄) ,

and we are looking for X̄ such that

η̄t(f ) = ηt(f ).

Note that W̄ , V̄ and Y are independent.



Representation via McKean–Vlasov SDEs

Goal: Find a and K such that η̄t = ηt =⇒ η̄ satisfies the KSE.

Compare the KSE

dηt = L∗ηtdt +
(
ηt (Hx − ηt(H))T −∇ ·

(
ηt C̃

))
(dYt − η̄t(H)dt)

and the Fokker-Planck equation of X̄

dη̄t = L∗η̄tdt −∇ · (η̄tK (·, η̄t))dYt −∇ · (η̄ta(·, η̄t))dt

· · ·+ 1

2

∑
i ,j

∂xi∂xj
(
η̄tK (·, η̄t)K (·, η̄t)T

)
dt.



Consistency conditions for K

Comparing the dYt terms in both equations, we see that

K = K 0 + C̃ (2)

with

− div(η̄tK
0(·, η̄t)) = (H − η̄t(H))T η̄t . (3)

Thus K is unique modulo ker [div(η̄t ·)].



Interpretation of the gain term

Writing (3) in flux form∫
∂D

η̄t(−νD)
TK 0(·, η̄t)ds =

∫
D
HTx η̄t(x)dx − η̄t(H

T),

for arbitrary domain D, we see that

K is a velocity

such that

flux Kη = the difference to expected observation.



Consistency conditions for a

Using (2) to simplify∑
i ,j

∂xi∂xj
(
η̄tK (·, η̄t)K (·, η̄t)T

)
,

one derives that

a (·, η̄t) = −K (·, η̄t) (H + η̄t(H))

2
+

(
(K (·, η̄t) · ∇)KT (·, η̄t)

)T
2

· · ·+
K (·, η̄t) div

(
η̄t C̃

)T
2 η̄t

+Ω0
t

for some Ω0
t ∈ ker [div(η̄t ·)].



Representation via McKean–Vlasov SDEs II

Since C̃ is constant, we note that

div
(
η̄t C̃

)T
η̄t

= C̃∇ log η̄t .

Thus X̄ satisfies the McKean–Vlasov SDE

dX̄t = B(X̄t)dt + CdW̄t + C̃dV̄t

· · ·+ K (X̄t , η̄t)

(
dYt −

HX̄t + η̄t(H)

2

)
· · ·+

(
(K (·, η̄t) · ∇)KT (·, η̄t)

)T
2

dt

· · ·+ K (X̄t , η̄t)C̃∇ log η̄t
2

dt +Ω0
tdt.

(4)



Consistent mean-field representation in the Gaussian case

For η̄t = N
(
m̄t , P̄t

)
it is easy to show that one can choose

K 0 (x , η̄) = P̄tH
T

Thus X̄ is given by equation

dX̄t = B
(
X̄t

)
dt + CdW̄t + C̃dV̄t

· · ·+
(
P̄tH

T + C̃
)(

dYt −
H
(
X̄t + m̄t

)
2

dt

)

· · · −
(
P̄tH

T + C̃
)
C̃TP̄−1

t

X̄t − m̄t

2
dt.

(5)



Justification in the non Gaussian case

Integration by parts shows

EY

[
K 0
(
X̄t , η̄t

)]
= CovY

[
X̄t

]
HT. (6)

Thus the EnKBF is a universal 0-order approximation of consistent
mean-field filters, for example w.r.t.

▶ Karhunen-Loeve expansion

▶ polynomial projections.



Well-posedness of the mean-field EnKBF - part I

The EnKBF (5) is a McKean–Vlasov equation with locally
Lipschitz coefficients.

Proving well-posedness for:

▶ SDEs:

locally Lipschitz
stopping time−−−−−−−−→ global Lipschitz

▶ McKean–Vlasov:

locally Lipschitz ������XXXXXX
stopping time−−−−−−−−→ changed dynamics

Counter examples showing non uniqueness of locally Lipschitz
McKean–Vlasov equations exist [S87].



Well-posedness of the mean-field EnKBF - part II

Basic idea: fixed point argument w.r.t. the covariance P̄.

For linear signals P̄ decouples from (5) via Kalman–Bucy
equations =⇒ use solution as the argument in fixed point
equation [CDMJR21].

Not possible for nonlinear signals (no decoupled characterization of
the fixed point).

[CNNR21] proved well posedness for a different version of the
EnKBF without the inverse and under the assumption that H is
bounded.



Well-posedness of the mean-field EnKBF - part III

Theorem
Assume that P̄0 is regular and that

λmin

(
CCT

)
> 0.

Then there exists a unique solution X̄ of (5).

Main tool: Spectral bounds for P̄

dλi
t

dt
≥ −2Lip(B)

√
trP̄t

√
λi
t + λmin

(
CCT

)
· · · − λmax

(
HTH

) (
λi
t

)2 − 2
∣∣∣C̃tR

−1
t Ht

∣∣∣λi
t

dλi
t

dt
≤ 2Lip(B)

√
trP̄t

√
λi
t + λmax

(
CCT

)
· · · − λmin

(
HTH

) (
λi
t

)2
+ 2

∣∣∣C̃tR
−1
t Ht

∣∣∣λi
t .



Well-posedness of the mean-field EnKBF - part IV

For H = I and C̃ = 0 upper bounds are robust w.r.t. perturbations
of P̄ in the dynamics.

Our proof relies on the linearity of H.

nonlinear, Lipschitz continuous H + nonlinear signal dynamics not
covered by existing literature.



EnKBF for correlated observation noise

A canonical way to approximate (5) uses the interacting particle
system X i , i = 1, · · · ,M determined by

dX i
t = B(X i

t )dt + CdW i
t + C̃dV i

t

· · ·+
(
PM
t HT + C̃

)(
dYt −

H
(
X i
t + xMt

)
2

dt

)

· · · −
(
PM
t HT + C̃

)
C̃T
(
PM
t

)+ X i
t − xmt
2

dt

(7)

Problem:
(
PM
t

)+ (
X i
t − xMt

)
may develop singularities.



Well posedness of the EnKBF

Theorem
We assume that PM

0 is regular and that for all t > 0

λmin

(
CCT

)
− 2

M − 1

(
1 +

√
dim(X )

)(
|C |2 +

∣∣∣C̃ ∣∣∣2) > 0. (8)

Then there exists a unique strong solution to (7).

The proof uses bounds for both PM and
(
PM
)+

similar to the
ones derived in the mean-field system.

Dynamics of the spectral decomposition cant be used due to
missing differentiablity.

Note that the regularity of PM
0 implies M > dim(X ).



Computing the Pseudoinverse
The inflation term can be computed in linear complexity using the
recursion found in [Kov79]

(
PM
)+

=

(
(M − 2)PM−1 + X̂ X̂T

M − 1

)+

= (M − 1)

(
PM−1

)+
M − 2

+ (M − 1)

(PM−1)
+

M−2 X̂ X̂T (P
M−1)

+

M−2

1 + X̂T (P
M−1)

+

M−2 X̂

· · ·+ (M − 1)
X̂⊥X̂

T
⊥∣∣∣X̂⊥

∣∣∣4
with

X̂ := XM − xM

X̂⊥ := X̂⊥ − PM−1
(
PM−1

)+
X̂⊥



Propagation of chaos

Theorem
Let X̄ i , i = 1, · · · ,M be i.i.d. copies of X̄ and define the error
term r it := X i

t − X̄ i
t , then

sup
t≤T

1

M

M∑
i=1

|r it |2
M→∞−−−−→ 0

in probability (and almost surely w.r.t. Y ).

We can derive implicit rates

sup
M∈N

√
M

√√√√
E

[
sup

t≤T∧ζκ

1

M

M∑
i=1

∣∣r it ∣∣2
]
≤ C (κ,T ) < +∞,

where ξκ is a hitting time of level κ for both PM and its inverse.
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