Learning variational data assimilation models with uncertainty quantification

Institute : Laboratoire des Sciences du Climat et de l'Environnement

Joint work with P.Naveau and R.Fablet

Introduction

Based on previous work focusing on learning jointly dynamical model and solver in a variational data assimilation framework (see *Fablet et al., 2021*), we extend this approach to account for uncertainties.

Variational data assimilation

4DVar objective function

$$J(x) = \sum_{i=1}^{n} ||Hx_i - y_i||_R^2 + \sum_{i=1}^{n} ||x_i - x_i^{(f)}||_Q^2$$

(see Tremolet, 2008)

- x estimated state of the system with x at time t_i : x_i
- Observation at time t_i: y_i
- Forecast of the numerical system : $\Phi(x) = x^{(f)}$
- R covariance matrix of observation error
- Q covariance matrix of model error

Main question

Could we use our knowledge in 4DVar optimization to approximate the distribution x|y instead of a pointwise estimate?

ELBO formulation

Evidence lower bound:

(Hoffman & Johnson, 2016)

$$\log p(y) \geqslant \mathbf{E}_{x \sim q_{\theta}} \log \left(\frac{p(x, y)}{q_{\theta}(x)} \right)$$

Maximum when:

$$q_{\theta} \sim p(x|y)$$

ELBO formulation

Evidence lower bound:

$$\log p(y) \geqslant \mathbf{E}_{x \sim q_{\theta}} \log \left(\frac{p(x, y)}{q_{\theta}(x)} \right)$$

$$\iff$$

$$\log p(y) \geqslant \mathbf{E}_{x \sim q_{\theta}} \log (p(y|x)) - D_{KL}^{1}(q_{\theta}||p_{x}).$$

 $^{^{1}\}mathsf{D}_{\mathsf{KL}}(q||p) = \mathbf{E}_{\mathsf{x}\sim q}\log\left(\frac{q}{p}\right)$

Full gaussian example

Assumption:

$$(y|x) \sim \mathcal{N}(Hx, R)$$

 $x \sim \mathcal{N}(\mu^*, \Sigma^*)$

Gaussian parametrization of q:

$$q_{\theta} = q_{(\mu, \Sigma)} \sim \mathcal{N}(\mu, \Sigma)$$

Full gaussian example: explicit ELBO fromulation

$$\mathsf{E}_{x \sim q_{\theta}} \log (p(y|x))$$
 — $D_{\mathsf{KL}}(q_{\theta}||p_{\mathsf{x}})$

Full gaussian example: explicit ELBO fromulation

$$\mathsf{E}_{x \sim q_{\theta}} \log (p(y|x))$$
 - $D_{\mathsf{KL}}(q_{\theta}||p_x)$

$$\int_{\frac{1}{2}} (tr(R^{-1}\Sigma) + \log(|R|) + ||y - H\mu||_R^2)$$

Full gaussian example: explicit ELBO fromulation

$$\mathsf{E}_{x \sim q_{\theta}} \log (p(y|x))$$
 — $D_{\mathit{KL}}(q_{\theta}||p_{x})$

$$\underbrace{\frac{1}{2}(tr(R^{-1}\Sigma + \log(|R|) + ||y - H\mu||_R^2)}_{\text{Observation term}}$$

Full gaussian example: explicit ELBO formulation

$$\mathsf{E}_{x \sim q_{\theta}} \log (p(y|x))$$
 — $D_{\mathsf{KL}}(q_{\theta}||p_{\mathsf{x}})$

Full gaussian example: explicit ELBO formulation

$$\mathsf{E}_{x \sim q_{\theta}} \log (p(y|x))$$
 — $D_{\mathit{KL}}(q_{\theta}||p_{x})$

$$\underbrace{\longrightarrow \frac{1}{2} \times (tr(\Sigma^{*-1}\Sigma) + log(\frac{|\Sigma^*|}{|\Sigma|}) + ||\mu^* - \mu||_{\Sigma^*}^2)}$$

Full gaussian example: explicit ELBO formulation

$$\mathsf{E}_{x \sim q_{\theta}} \log \left(p(y|x) \right) \quad - \quad D_{\mathsf{KL}}(q_{\theta}||p_{\mathsf{x}})$$

$$\underbrace{\frac{1}{2}\times\underbrace{\left(tr(\Sigma^{*-1}\Sigma)+\log(\frac{\left|\Sigma^{*}\right|}{\left|\Sigma\right|})+\left|\left|\mu^{*}-\mu\right|\right|_{\Sigma^{*}}^{2}\right)}_{g(\mu,\Sigma)}$$

In general, g is not known

Rewriting trick

We use the following trick. Let's introduce Φ such as :

$$g(\mu, \Sigma) = ||\Phi(\mu, \Sigma) - (\mu, \Sigma)||^2$$

Why?

- Common reformulation in ML regularization techniques
- Analogy with the dynamical term of variational cost
- ullet It implies a dynamical evolution of μ and Σ

New variational cost

$$U_{\hat{\Phi}(y,\mu,\Sigma)} = ||y - H\mu||^2 + ||\hat{\Phi}(\mu,\Sigma) - (\mu,\Sigma)||^2$$

NN framework

Operator and solver

- Dynamical operator Φ : Auto-encoder or Gibbs Energy NN
- Solver Γ: iterative gradient-based inversion algorithm to minimize previously defined variational cost

NN framework

Operator and solver

- Dynamical operator Φ : Auto-encoder or Gibbs Energy NN
- Solver Γ: iterative gradient-based inversion algorithm to minimize previously defined variational cost

Block cell

Figure: Iteration of the solver

Learning setting

Let us denote by $\Psi_{\Phi,\Gamma}(\mu^{(0)},\Sigma^{(0)},y)$ the resulting model.

An entropy criterion (see Bocquet et al., 2020)

If the dataset comprises true states $x_1, x_2, ..., x_N$, we can consider the following learning loss : $L = \sum_n -ln(P_{\Psi_{\Phi,\Gamma}(\mu_n^{(0)}, \sum_n^{(0)}, y_n)}(x_n))$

i.e:

$$L = \sum_{n} \frac{1}{2} ({}^{t}(x_{n} - \mu_{n}^{(N)}(\Sigma_{n}^{(N)})^{-1}(x_{n} - \mu_{n}^{(N)}) + \ln(\det(\Sigma_{n}^{(N)}))$$

Studied datasets

Datasets

- Auto-regressive linear models
- Lorenz 63
- Danube discharge measurement network

Our model has been tested both in prediction and reconstruction.

AR model

We simulate a dataset which satisfies a linear dynamics of the form:

$$\begin{cases} X_t = AX_{t-1} + BX_{t-2} + \eta_t \\ Y_t = X_t + \epsilon \end{cases}$$

We studied two cases:

- State independent model noise $\eta_t \propto \mathcal{N}(0, I)$
- State dependent model noise $\eta_t \propto CX_{t-1}\mathcal{N}(0, I)$

AR model

Score for forecasted steps:

Method	Type of model error	MSE	Entropy	Known model and errors
4DvarnetSto	State independent	$4.78 ext{ } 10^{-4}$	-2.38	No
	State dependent	$3.19 ext{ } 10^{-3}$	-1.45	No
Kalman Filter	State independent	$4.48 \ 10^{-4}$	-2.29	Yes
	State dependent	$1.58 ext{ } 10^{-3}$	-1.47	Yes

L63 model

Reconstruction with only the first variable observed once every eight time steps for two different settings :

Standard L63 dynamics:

$$\begin{cases} \frac{dx}{dt} = \sigma(y - x) \\ \frac{dy}{dt} = \rho x - y - xz \\ \frac{dz}{dt} = xy - \beta z \end{cases}$$

Stochastic L63 (*Chapron et al., 2018*):

$$\begin{cases}
dX &= (\sigma(Y-X) - \frac{4}{2\Gamma}X)dt \\
dY &= (\rho X - Y - XZ - \frac{4}{2\Gamma})dt \\
+ \frac{\rho - Z}{\Gamma^{\frac{1}{2}}}dB_t \\
dZ &= (XY - \beta Z - \frac{8}{2\Gamma}Z)dt \\
+ \frac{Y}{\Gamma^{\frac{1}{2}}}dB_t
\end{cases}$$

L63 model

L63 experiments:

Reconstruction with only the first variable observed once every eight time steps for two different settings :

Standard L63 dynamics :

Stochastic L63 (*Chapron et al., 2018*):

L63 model

Method	Stochastic	MSE	Entropy
4DvarnetSto	No	0.45	-4.60
	Yes	3.51	-1.42
EnKF with first	No	1.40	-0.48
variable observed	Yes	23.8	4.9
EnKF with two first	No	0.40	8.13
variables observed	Yes	4.44	-1.85
EnKF with all	No	0.38	44.7
variables observed	Yes	2.60	-2.47

Danube river network dataset

Figure: 31 gauging stations on the Danube river network (*Asadi et al., 2015*), with 50 years of daily measurements (1960-2010)

Discharge reconstruction task

Setting:

Reconstruction task for which observations are available every 4 days for only 15 stations

Visualizaition

Figure: Hidden observation (blue dots), estimated mean (red curve) and 95% confidence interval

Conclusion and perspectives

- Based on 4DVar-like variational cost inferred from ELBO maximization, we have been able to give the best gaussian approximation of (x|y)
- No prior knowledge on the dynamic is required, neither on the error
- This framework can be extended to other parametric distribution, especially heavier-tailed distribution.
- More complex type of noise can be simulated to evaluate our method for highly non-gaussian distribution estimation

References

The Annals of Applied Statistics, 2015.

End-to-end learning for variational assimilation models and solvers

Journal of Advances in Modeling Earth Systems, 2021.

Model error estimation in 4DVar *QJRMS. 2007.*

B. Chapron, P. Derian, E. Mémin and V.Resseguier Large-scale flows under location uncertainty: a consistent stochastic framework QJRMS. 2018.

References

M. D. Hoffman M. J. Johnson

Elbo surgery: yet another way to carve up the variational evidence lower bound.

NIPS (Vol. 1, No. 2), 2016