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Introduction

Based on previous work focusing on learning jointly dynamical
model and solver in a variational data assimilation framework (see
Fablet et al., 2021), we extend this approach to account for
uncertainties.
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Context

Variational data assimilation

4DVar objective function

J(x) = Y [1Hxi — yillz+
i=1

: ()
Z I — x|
i=1

(see Tremolet, 2008)

@ x estimated state of the system with x at time t; : x;
@ Observation at time t; : y;

o Forecast of the numerical system : ®(x) = x(f)

@ R covariance matrix of observation error

°

@ covariance matrix of model error
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Context

Main question

Could we use our knowledge in 4DVar optimization to approximate
the distribution x|y instead of a pointwise estimate?
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Probabilistic formulation

ELBO formulation

EVidence IOWer bound : (Hoffman & Johnson,2016)

og p(y) = Ex~q, log
g ply X~y G(X)

Maximum when :
qs ~ p(xly)
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Probabilistic formulation

ELBO formulation

Evidence lower bound :

log p(y) = Ex~g, log (

log p(y) = Ex~q, log (p(y]x)) — Dri*(qsl|px)-

Diulqllp) = Exvqlog (1) 6/31



Probabilistic formulation

Full gaussian example

Assumption :

(y]x) ~ N'(Hx, R)
x ~ N(*, £7)

Gaussian parametrization of g:

99 = qu,x) ~ N (i, X)
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Probabilistic formulation

Full gaussian example : explicit ELBO fromulation

Ex~qo log (p(y[x))  — Dict(aollpx)
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Probabilistic formulation

Full gaussian example : explicit ELBO fromulation

Ex~aolog (p(y|x))  — Dit(aollpx)
W

S (tr(R7D) + log(IRI) + [ly — HullR)
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Probabilistic formulation

Full gaussian example : explicit ELBO fromulation

Ex~qo log (p(y|x))  — Dit(aollpx)

\:

-5(1—7("?_12 + log(|R|) + [ly, — Hpl|R)

Observation term
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Probabilistic formulation

Full gaussian example : explicit ELBO formulation

Ex~qo log (p(y[x))  — Dict(aollpx)
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Probabilistic formulation

Full gaussian example : explicit ELBO formulation

Ex~qo log (p(ylx))  — Dic(qollpx)

2]

_ >
5 = (tr(Z ) + log () + ln” — i)
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Probabilistic formulation

Full gaussian example : explicit ELBO formulation

Ex~qo log (p(ylx))  — Dic(qollpx)

2]

_ >
5 = (tr(Z ) +log () + ln” — i)

g(p,x)

In general, g is not known
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Probabilistic formulation

Rewriting trick

We use the following trick. Let's introduce ¢ such as :

g, T) = [|®(k, %) — (1, D)

Why?
@ Common reformulation in ML regularization techniques
@ Analogy with the dynamical term of variational cost

@ It implies a dynamical evolution of © and &
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Probabilistic formulation

New variational cost

Upy sy = Iy = Hul? + [|$(, 2) = (. D)7
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NN architecture

NN framework

Operator and solver
@ Dynamical operator ® : Auto-encoder or Gibbs Energy NN

@ Solver I": iterative gradient-based inversion algorithm to
minimize previously defined variational cost

First guess

@,z 1 Solver T'

- Solver block———@—  {....) —— Solver block—@————{Solver block @) Mifq:e;af;)

Observations 1

D

Auto-encoder
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NN architecture

NN framework

Operator and solver
@ Dynamical operator ® : Auto-encoder or Gibbs Energy NN

@ Solver I": iterative gradient-based inversion algorithm to
minimize previously defined variational cost

First guess | —
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NN architecture

Block cell
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Figure: lteration of the solver
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NN architecture

Learning setting

Let us denote by We r(1(?), X(O)y) the resulting model.

An entropy criterion (see Bocquet et al., 2020)

If the dataset comprises true states xi, x, ..., X)y, we can consider
i arning loss : L = —In(P %

jche following learning >, —In( \U¢,r(u£°),2,(1°),yn)( )

ie:

L= 3, 30t = 18" ()00 = ") + In(der(T5™))
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Numerical experiments

Studied datasets

Datasets

@ Auto-regressive linear models
@ Lorenz 63

@ Danube discharge measurement network

Our model has been tested both in prediction and reconstruction.
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Numerical experiments

AR model

We simulate a dataset which satisfies a linear dynamics of the form:

Xt = AXt_l + BXt_Q + N
Yt = Xt + €

We studied two cases :
e State independent model noise n; oc N'(0 , /)
@ State dependent model noise 1y oc CX;—1N (0, /)
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Numerical experiments

AR model

Score for forecasted steps :

Method Type of model error MSE Entropy | Known model and errors
4DvarnetSto State independent | 4.78 10~ * -2.38 No
State dependent 3.19 1073 -1.45 No
Kalman Filter | State independent | 4.48 10 % | -2.29 Yes
State dependent 1.58 1073 -1.47 Yes
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Numerical experiments

L63 model

Reconstruction with only the first variable observed once every
eight time steps for two different settings :

Standard L63 dynamics : Stochastic L63 (Chapron et al.,
2018) :
dx —
dt oly =) dX = (o(Y - X)— AX)dt
d
& = PX—y—xz dY = (pX-—Y —XZ—J)dt
p—Z
% = Xy—/BZ +r%d8t
dZ = (XY —BZ-L8Z)dt
+-%dB:
rz2
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Numerical experiments

L63 model

L63 experiments :
Reconstruction with only the first variable observed once every
eight time steps for two different settings :

Standard L63 dynamics : Stochastic L63 (Chapron et al.,

2018) :
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Numerical experiments

L63 model

Method Stochastic | MSE | Entropy
4DvarnetSto No 0.45 -4.60
Yes 3.51 -1.42
EnKF with first No 1.40 -0.48
variable observed Yes 23.8 49
EnKF with two first No 0.40 8.13
variables observed Yes 4.44 -1.85
EnKF with all No 0.38 447
variables observed Yes 2.60 -2.47
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Numerical experiments

Danube river network dataset

Altitude
m
4000

2000

Figure: 31 gauging stations on the Danube river network (Asadi et al.,
2015), with 50 years of daily measurements (1960-2010)
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Numerical experiments

Discharge reconstruction task

Setting :
Reconstruction task for which observations are available every 4
days for only 15 stations
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Numerical experiments

Visualizaition

Figure: Hidden observation (blue dots), estimated mean (red curve) and
95% confidence interval
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Conclusion and perspectives

@ Based on 4DVar-like variational cost infered from ELBO
maximization, we have been able to give the best gaussian
approximation of (x|y)

@ No prior knowledge on the dynamic is required, neither on the
error

@ This framework can be extended to other parametric
distribution, especially heavier-tailed distribution.

@ More complex type of noise can be simulated to evaluate our
method for highly non-gaussian distribution estimation
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