
Sampling error in the estimation of observation error 
covariance matrices using observation-minus-
background and observation-minus-analysis statistics

Guannan Hu1 and Sarah L. Dance1,2

1University of Reading, United Kingdom 

2National Centre for Earth Observation (NCEO), United Kingdom 



Motivation

• Observation error covariance matrices 
affect the accuracy of analyses and 
forecasts. 

• An indirect sampling approach is widely 
used to estimate correlated observation 
error statistics (Desroziers et al., 2005).

• Our goal is to investigate the sampling 
error of this method. Spatial correlation

(Waller et al.,2016, Remote sensing)

Interchannel correlation
(Gauthier et al., 2018)
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Desroziers et al. diagnostics
• Observation-minus-background (O-B) statistics

𝐝𝑜−𝑏 = 𝐲 − 𝐻(𝐱𝑏)
= (𝐲 − 𝐻(𝐱𝑡)) − (𝐻(𝐱𝑏) − 𝐻(𝐱𝑡))
≈ 𝛜𝑜 − 𝐇(𝐱𝑏 − 𝐱𝑡)
≈ 𝛜𝑜 − 𝐇𝛜𝑏

𝐲 ∈ ℝ𝑚: observation vector

𝐱b ∈ ℝ𝑛: background model state vector

𝐻: nonlinear observation operator ℝ𝑛 → ℝ𝑚

𝐱t ∈ ℝ𝑛: true model state vector

𝐇 ∈ ℝ𝑚×𝑛: linearised observation operator

𝛜𝑜: observation error

𝛜𝑏: background error
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• Statistical expectation

𝔼 𝐝𝑜−𝑏 𝐝𝑜−𝑏
T
= 𝔼 𝛜𝑜 −𝐇𝛜𝑏 𝛜𝑜 −𝐇𝛜𝑏

T

= 𝔼 𝛜𝑜 𝛜𝑜 T − 𝔼 𝛜𝑜 𝛜𝑏
T
𝐇T +𝐇𝔼 𝛜𝑏 𝛜𝑜 T + 𝐇𝔼 𝛜𝑏 𝛜𝑏

T
𝐇T

= 𝔼 𝛜𝑜 𝛜𝑜 T +𝐇𝔼 𝛜𝑏 𝛜𝑏
T
𝐇T

= 𝐑 + 𝐇𝐁𝐇T

= 𝐃

𝐃 ∈ ℝ𝑚×𝑚: Innovation covariance matrix
𝐑 ∈ ℝ𝑚×𝑚 : observation error covariance matrix
𝐁 ∈ ℝ𝑛×𝑛 : background error covariance matrix

Desroziers et al. diagnostics
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• Observation-minus-analysis (O-A) residuals

𝐝𝑜−𝑎 = 𝐲 − 𝐻(𝐱𝑎)

= 𝐲 − 𝐻 𝐱𝑏 + 𝛿𝐱

= 𝐲 − 𝐻 𝐱𝑏 −𝐇𝛿𝐱 − 𝒪 𝛿𝐱 2

≈ 𝐝𝑜−𝑏 − 𝐇𝛿𝐱
= 𝐈 − 𝐇𝐊 𝐝𝑜−𝑏

= 𝐑 𝐇𝐁𝐇T + 𝐑
−1

𝐝o−b

𝛿𝐱 = 𝐊𝐝𝑜−𝑏

𝐱a ∈ ℝ𝑛: analysis model state vector
𝐊 ∈ ℝ𝑛×𝑚: Kalman gain matrix 
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• We obtain in the previous slides

𝔼 𝐝𝑜−𝑏 𝐝𝑜−𝑏
T
= 𝐑 +𝐇𝐁𝐇T

𝐝𝑜−𝑎 = 𝐑 𝐇𝐁𝐇T + 𝐑
−1

𝐝o−b

• The expectation of the outer product of 𝐝𝑜−𝑎 and 𝐝𝑜−𝑏

𝔼 𝐝𝑜−𝑎 𝐝𝑜−𝑏
T

= 𝐑 𝐇𝐁𝐇T + 𝐑
−1

𝔼 𝐝𝑜−𝑏 𝐝𝑜−𝑏
T
= 𝐑

NOTE: we assume that the error covariance matrices used describe the truth 
completely accurately, otherwise (Waller et al., 2016; Janjic et al., 2018)

𝔼 𝐝𝑜−𝑎 𝐝𝑜−𝑏
T
≠ 𝐑
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Some remarks:

• A commonly used technique to 
estimate correlated 𝐑
(interchannel and spatial 
correlations).

• The matrices estimated are noisy 
and have to be reconditioned for 
operational use.

Interchannel correlation
(Gauthier et al., 2018)
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Innovation covariance matrix (direct sampling)

𝐃 = 𝔼 𝐝𝑜−𝑏 𝐝𝑜−𝑏
T

𝐃 =
1

𝑁


𝑖=1

𝑁

𝐝𝑖
𝑜−𝑏 𝐝𝑖

𝑜−𝑏 T
− 𝐝𝑜−𝑏 𝐝𝑜−𝑏

T

𝑁: sample size 

𝐝𝑖
𝑜−𝑏: 𝑖-th O-B residual

𝐝𝑜−𝑏: sample mean
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Observation error covariance matrix (indirect sampling)

𝐑 = 𝔼 𝐝𝑜−𝑎 𝐝𝑜−𝑏
T

𝐑 =
1

𝑁


𝑖=1

𝑁

𝐝𝑖
𝑜−𝑎 𝐝𝑖

𝑜−𝑏 T
− 𝐝𝑜−𝑎 𝐝𝑜−𝑏

T
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Previous work on direct sampling error (Ledoit and Wolf, 2004)

• Expected quadratic loss of sample covariance matrix 𝐃

1

𝑚
E 𝐃 − 𝐃

𝐹

2
= 𝛼 𝜇2 + 𝜃 − 𝛽,

⋅ 𝐹: Frobenius norm (elementwise difference)

• The 1st Factor: ratio of the number of observations and sample size

𝛼 = 𝑚/𝑁

𝑚: the number of observations
𝑁: sample size
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• Expected quadratic loss of sample covariance matrix 𝐃

1

𝑚
E 𝐃 − 𝐃

𝐹

2
= 𝛼 𝜇2 + 𝜃 − 𝛽

• The 2nd Factor: square of the average size of the diagonal elements

𝜇2 = 𝑡𝑟𝑎𝑐𝑒(𝐃)/𝑚 2

The trace of a square matrix is defined to be the sum of its diagonal 
elements.
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• Eigenvalue decomposition

𝐃 = 𝐔 diag 𝜆1 𝐃 , 𝜆2 𝐃 ,⋯ , 𝜆𝑚 𝐃 𝐔T

𝐔 ∈ ℝ𝑚×𝑚: matrix whose columns are the eigenvectors of 𝐃
𝜆𝑖(𝐃): the 𝑖-th eigenvalue of 𝐃

• Uncorrelated observation errors

𝚪 = 𝐔T[𝛜1
𝑜, … , 𝛜𝑁

𝑜 ]

𝚪 ∈ ℝ𝑚×𝑁: matrix of 𝑁 observations on a system of 𝑚 uncorrelated 
random variables that spans the same space as [𝛜1

𝑜, … , 𝛜𝑁
𝑜 ].
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• Expected quadratic loss of  𝐃

1

𝑚
E 𝐃 − 𝐃

𝐹

2
= 𝛼 𝜇2 + 𝜃 − 𝛽

• The 3rd Factor: variation in the mean size of the squared observation 
error between samples

𝜃 = 𝑉𝑎𝑟
1

𝑚


𝑖=1

𝑚

𝛾𝑖1
2 ,

𝛾𝑖1: the 𝑖-th element of the first column of 𝚪

• 𝜃 is bounded as 𝑁 goes to infinity.
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• Expected quadratic loss of 𝐃

1

𝑚
E 𝐃 − 𝐃

𝐹

2
= 𝛼 𝜇2 + 𝜃 − 𝛽

• The 4th Factor: the sum of the squares of the eigenvalues divided by 
𝑚 and 𝑁

𝛽 =
1

𝑚𝑁


𝑖=1

𝑚

𝜆𝑖
2 (𝐃)

• 𝛽 converges to zero as 𝑁 goes to infinity.
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Let

𝐖 = 𝐑 𝐇𝐁𝐇T + 𝐑
−1

Then we have
𝐑 = 𝐖𝐃 (𝐃 = 𝐑 +𝐇𝐁𝐇T)

𝐑 = 𝐖𝐃
and we can write 

1

𝑚
E 𝐑 − 𝐑

𝐹

2
=

1

𝑚
E 𝐖(𝐃 − 𝐃)

𝐹

2
,

which satisfies the inequality

1

𝑚
E 𝐑 − 𝐑

𝐹

2
≤ 𝑠1

2 𝐖
1

𝑚
E 𝐃 − 𝐃

𝐹

2
= 𝑠1

2 𝐖 𝛼 𝜇2 + 𝜃 − 𝛽

𝑠1
2 𝐖 : the square of the largest singular value of 𝐖 (not necessarily symmetric) 
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• Equally spaced model grid points on a latitude 
circle on the Earth

• Observations at alternate grid points

• Chordal distance
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Experimental design

• Error covariance modelling
𝐁 = 𝜎𝑏

2𝐂𝑆𝑂𝐴𝑅(𝑙𝑏)

𝐑 = 𝜎𝑜
2𝐂𝐹𝑂𝐴𝑅(𝑙𝑜)

𝐂𝐹𝑂𝐴𝑅 and 𝐂𝑆𝑂𝐴𝑅: first-order and second-order auto-regression correlation functions

𝜎𝑏 and 𝜎𝑜: background and observation error standard deviations

𝑙𝑏 and 𝑙𝑜: background and observation error correlation lengthscales
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21

𝑙𝑜 and 𝑙𝑏 have smaller influence 
on the sampling error than 𝜎𝑜



• The spread of the sample eigenvalues around the mean of the true eigenvalues

𝛿 = 𝔼 

𝑖=1

𝑚

(𝜆𝑖 𝐑 − 𝜇𝑅)
2 , 𝜇𝑅 =

1

𝑚


𝑖

𝑚

𝜆𝑖 𝐑 .

• The variance of the true eigenvalues 

𝛿𝑟𝑒𝑓 =

𝑖=1

𝑚

𝜆𝑖 𝐑 − 𝜇𝑅)
2

• Ledoit and Wolf  (2004) showed that

1

𝑚
E 𝐑 − 𝐑

𝐹

2
=
1

m
𝛿 − 𝛿𝑟𝑒𝑓 ,

which indicates that 𝛿 converges to 𝛿𝑟𝑒𝑓 as sampling error decreases.
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Cross-sectional dispersion of sample eigenvalues
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The smallest eigenvalue was found to affect the speed of  

the convergence of  the minimisation in variational data 

assimilations.



Summary

• The sampling error is mainly affected by observation error standard 
deviation (compared to other error characteristics).

• Numerical results showed that the largest sample eigenvalues are 
greater than the true values and the smallest sample eigenvalues are 
smaller than the true values.

• Our results can provide guidance in deciding on appropriate sample 
sizes and choosing parameters for matrix reconditioning techniques. 
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