

Sampling error in the estimation of observation error covariance matrices using observation-minusbackground and observation-minus-analysis statistics

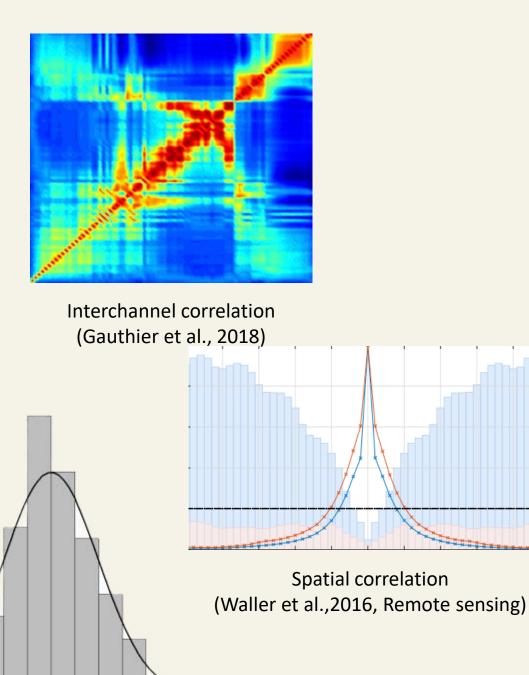
Guannan Hu¹ and Sarah L. Dance^{1,2}

¹University of Reading, United Kingdom

²National Centre for Earth Observation (NCEO), United Kingdom

Motivation

- Observation error covariance matrices affect the accuracy of analyses and forecasts.
- An indirect sampling approach is widely used to estimate correlated observation error statistics (Desroziers et al., 2005).
- Our goal is to investigate the **sampling error** of this method.



• Observation-minus-background (O-B) statistics

$$\mathbf{d}^{o-b} = \mathbf{y} - H(\mathbf{x}^{b})$$

= $(\mathbf{y} - H(\mathbf{x}^{t})) - (H(\mathbf{x}^{b}) - H(\mathbf{x}^{t}))$
 $\approx \mathbf{\epsilon}^{o} - \mathbf{H}(\mathbf{x}^{b} - \mathbf{x}^{t})$
 $\approx \mathbf{\epsilon}^{o} - \mathbf{H}\mathbf{\epsilon}^{b}$

 $\mathbf{y} \in \mathbb{R}^m$: observation vector

 $\mathbf{x}^{\mathrm{b}} \in \mathbb{R}^{n}$: background model state vector

H: nonlinear observation operator $\mathbb{R}^n \to \mathbb{R}^m$

 $\mathbf{x}^{\mathrm{t}} \in \mathbb{R}^{n}$: true model state vector

 $\mathbf{H} \in \mathbb{R}^{m \times n}$: linearised observation operator

 $\mathbf{\epsilon}^{o}$: observation error

 $\mathbf{\epsilon}^{b}$: background error

• Statistical expectation

$$\mathbb{E}\left[\mathbf{d}^{o-b}(\mathbf{d}^{o-b})^{\mathrm{T}}\right] = \mathbb{E}\left[\left(\mathbf{\epsilon}^{o} - \mathbf{H}\mathbf{\epsilon}^{b}\right)\left(\mathbf{\epsilon}^{o} - \mathbf{H}\mathbf{\epsilon}^{b}\right)^{\mathrm{T}}\right] \\ = \mathbb{E}\left[\mathbf{\epsilon}^{o}(\mathbf{\epsilon}^{o})^{\mathrm{T}}\right] - \mathbb{E}\left[\mathbf{\epsilon}^{o}(\mathbf{\epsilon}^{b})^{\mathrm{T}}\right]\mathbf{H}^{\mathrm{T}} + \mathbf{H}\mathbb{E}\left[\mathbf{\epsilon}^{b}(\mathbf{\epsilon}^{o})^{\mathrm{T}}\right] + \mathbf{H}\mathbb{E}\left[\mathbf{\epsilon}^{b}(\mathbf{\epsilon}^{b})^{\mathrm{T}}\right]\mathbf{H}^{\mathrm{T}} \\ = \mathbb{E}\left[\mathbf{\epsilon}^{o}(\mathbf{\epsilon}^{o})^{\mathrm{T}}\right] + \mathbf{H}\mathbb{E}\left[\mathbf{\epsilon}^{b}(\mathbf{\epsilon}^{b})^{\mathrm{T}}\right]\mathbf{H}^{\mathrm{T}} \\ = \mathbf{R} + \mathbf{H}\mathbf{B}\mathbf{H}^{\mathrm{T}} \\ = \mathbf{D}$$

 $\mathbf{D} \in \mathbb{R}^{m \times m}$: Innovation covariance matrix $\mathbf{R} \in \mathbb{R}^{m \times m}$: observation error covariance matrix $\mathbf{B} \in \mathbb{R}^{n \times n}$: background error covariance matrix

• Observation-minus-analysis (O-A) residuals

$$\mathbf{d}^{o-a} = \mathbf{y} - H(\mathbf{x}^{a})$$

= $\mathbf{y} - H(\mathbf{x}^{b} + \delta \mathbf{x})$
= $\mathbf{y} - H(\mathbf{x}^{b}) - \mathbf{H}\delta \mathbf{x} - \mathcal{O}(||\delta \mathbf{x}||^{2})$
 $\approx \mathbf{d}^{o-b} - \mathbf{H}\delta \mathbf{x}$
= $(\mathbf{I} - \mathbf{H}\mathbf{K})\mathbf{d}^{o-b}$
= $\mathbf{R}(\mathbf{H}\mathbf{B}\mathbf{H}^{\mathrm{T}} + \mathbf{R})^{-1}\mathbf{d}^{o-b}$

 $\delta \mathbf{x} = \mathbf{K} \mathbf{d}^{o-b}$ $\mathbf{x}^a \in \mathbb{R}^n$: analysis model state vector $\mathbf{K} \in \mathbb{R}^{n \times m}$: Kalman gain matrix

• We obtain in the previous slides

$$\mathbb{E}\left[\mathbf{d}^{o-b}\left(\mathbf{d}^{o-b}\right)^{\mathrm{T}}\right] = \mathbf{R} + \mathbf{H}\mathbf{B}\mathbf{H}^{\mathrm{T}}$$
$$\mathbf{d}^{o-a} = \mathbf{R}\left(\mathbf{H}\mathbf{B}\mathbf{H}^{\mathrm{T}} + \mathbf{R}\right)^{-1}\mathbf{d}^{o-b}$$

• The expectation of the outer product of \mathbf{d}^{o-a} and \mathbf{d}^{o-b}

$$\mathbb{E}\left[\mathbf{d}^{o-a}\left(\mathbf{d}^{o-b}\right)^{\mathrm{T}}\right] = \mathbf{R}\left(\mathbf{H}\mathbf{B}\mathbf{H}^{\mathrm{T}} + \mathbf{R}\right)^{-1}\mathbb{E}\left[\mathbf{d}^{o-b}\left(\mathbf{d}^{o-b}\right)^{\mathrm{T}}\right] = \mathbf{R}$$

NOTE: we assume that the error covariance matrices used describe the truth completely accurately, otherwise (Waller et al., 2016; Janjic et al., 2018)

$$\mathbb{E}\left[\mathbf{d}^{o-a}\left(\mathbf{d}^{o-b}\right)^{\mathrm{T}}\right]\neq\mathbf{R}$$



Interchannel correlation (Gauthier et al., 2018)

Some remarks:

- A commonly used technique to estimate correlated R (interchannel and spatial correlations).
- The matrices estimated are noisy and have to be reconditioned for operational use.

Sample covariance matrix

Innovation covariance matrix (direct sampling)

$$\mathbf{D} = \mathbb{E}\left[\mathbf{d}^{o-b} \left(\mathbf{d}^{o-b}\right)^{\mathrm{T}}\right]$$

$$\widehat{\mathbf{D}} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{d}_{i}^{o-b} (\mathbf{d}_{i}^{o-b})^{\mathrm{T}} - \overline{\mathbf{d}^{o-b}} (\overline{\mathbf{d}^{o-b}})^{\mathrm{T}}$$

N: sample size

 \mathbf{d}_{i}^{o-b} : *i*-th O-B residual

 $\overline{\mathbf{d}^{o-b}}$: sample mean

Sample covariance matrix

Observation error covariance matrix (indirect sampling)

$$\mathbf{R} = \mathbb{E}\left[\mathbf{d}^{o-a} \left(\mathbf{d}^{o-b}\right)^{\mathrm{T}}\right]$$

$$\widehat{\mathbf{R}} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{d}_{i}^{o-a} (\mathbf{d}_{i}^{o-b})^{\mathrm{T}} - \overline{\mathbf{d}^{o-a}} (\overline{\mathbf{d}^{o-b}})^{\mathrm{T}}$$

• Expected quadratic loss of sample covariance matrix $\widehat{\boldsymbol{D}}$

$$\frac{1}{m} \mathbf{E} \left[\left\| \widehat{\mathbf{D}} - \mathbf{D} \right\|_{F}^{2} \right] = \alpha (\mu^{2} + \theta) - \beta,$$

 $\|\cdot\|_F$: Frobenius norm (elementwise difference)

• The 1st Factor: ratio of the number of observations and sample size

 $\alpha = m/N$

m: the number of observations *N*: sample size

- Expected quadratic loss of sample covariance matrix $\widehat{\boldsymbol{D}}$

$$\frac{1}{m} \mathbf{E} \left[\left\| \widehat{\mathbf{D}} - \mathbf{D} \right\|_{F}^{2} \right] = \alpha (\mu^{2} + \theta) - \beta$$

• The 2nd Factor: square of the average size of the diagonal elements

$$\mu^2 = [trace(\mathbf{D})/m]^2$$

The *trace* of a square matrix is defined to be the sum of its diagonal elements.

• Eigenvalue decomposition

$$\mathbf{D} = \mathbf{U} \operatorname{diag}(\lambda_1(\mathbf{D}), \lambda_2(\mathbf{D}), \cdots, \lambda_m(\mathbf{D})) \mathbf{U}^{\mathrm{T}}$$

 $\mathbf{U} \in \mathbb{R}^{m \times m}$: matrix whose columns are the eigenvectors of \mathbf{D} $\lambda_i(\mathbf{D})$: the *i*-th eigenvalue of \mathbf{D}

Uncorrelated observation errors

$$\boldsymbol{\Gamma} = \mathbf{U}^{\mathrm{T}}[\boldsymbol{\epsilon}_{1}^{o}, \dots, \boldsymbol{\epsilon}_{N}^{o}]$$

 $\Gamma \in \mathbb{R}^{m \times N}$: matrix of N observations on a system of m uncorrelated random variables that spans the same space as $[\epsilon_1^o, ..., \epsilon_N^o]$.

- Expected quadratic loss of $\,\widehat{D}\,$

$$\frac{1}{m} \mathbf{E} \left[\left\| \widehat{\mathbf{D}} - \mathbf{D} \right\|_{F}^{2} \right] = \alpha (\mu^{2} + \theta) - \beta$$

• The 3rd Factor: variation in the mean size of the squared observation error between samples

$$\theta = Var\left[\frac{1}{m}\sum_{i=1}^{m}\gamma_{i1}^{2}\right],$$

 γ_{i1} : the *i*-th element of the first column of Γ

• θ is bounded as N goes to infinity.

- Expected quadratic loss of $\,\widehat{D}\,$

$$\frac{1}{m} \mathbf{E} \left[\left\| \widehat{\mathbf{D}} - \mathbf{D} \right\|_{F}^{2} \right] = \alpha (\mu^{2} + \theta) - \beta$$

• The 4th Factor: the sum of the squares of the eigenvalues divided by m and N

$$\beta = \frac{1}{mN} \sum_{i=1}^{m} \lambda_i^2 \left(\mathbf{D} \right)$$

• β converges to zero as N goes to infinity.

Our contribution to indirect sampling error

Let

$$\mathbf{W} = \mathbf{R} \big(\mathbf{H} \mathbf{B} \mathbf{H}^{\mathrm{T}} + \mathbf{R} \big)^{-1}$$

Then we have

$$\mathbf{R} = \mathbf{W}\mathbf{D} \quad (\mathbf{D} = \mathbf{R} + \mathbf{H}\mathbf{B}\mathbf{H}^{\mathrm{T}})$$
$$\widehat{\mathbf{R}} = \mathbf{W}\widehat{\mathbf{D}}$$

and we can write

$$\frac{1}{m} \mathbb{E}\left[\left\|\widehat{\mathbf{R}} - \mathbf{R}\right\|_{F}^{2}\right] = \frac{1}{m} \mathbb{E}\left[\left\|\mathbf{W}(\widehat{\mathbf{D}} - \mathbf{D})\right\|_{F}^{2}\right],$$

which satisfies the inequality

$$\frac{1}{m} \mathbb{E}\left[\left\|\widehat{\mathbf{R}} - \mathbf{R}\right\|_{F}^{2}\right] \le s_{1}^{2}(\mathbf{W}) \frac{1}{m} \mathbb{E}\left[\left\|\widehat{\mathbf{D}} - \mathbf{D}\right\|_{F}^{2}\right] = s_{1}^{2}(\mathbf{W})[\alpha(\mu^{2} + \theta) - \beta]$$

 $s_1^2(\mathbf{W})$: the square of the largest singular value of \mathbf{W} (not necessarily symmetric)

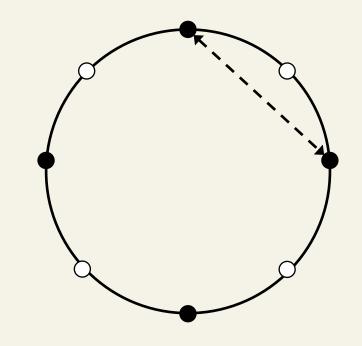
15

Experimental design

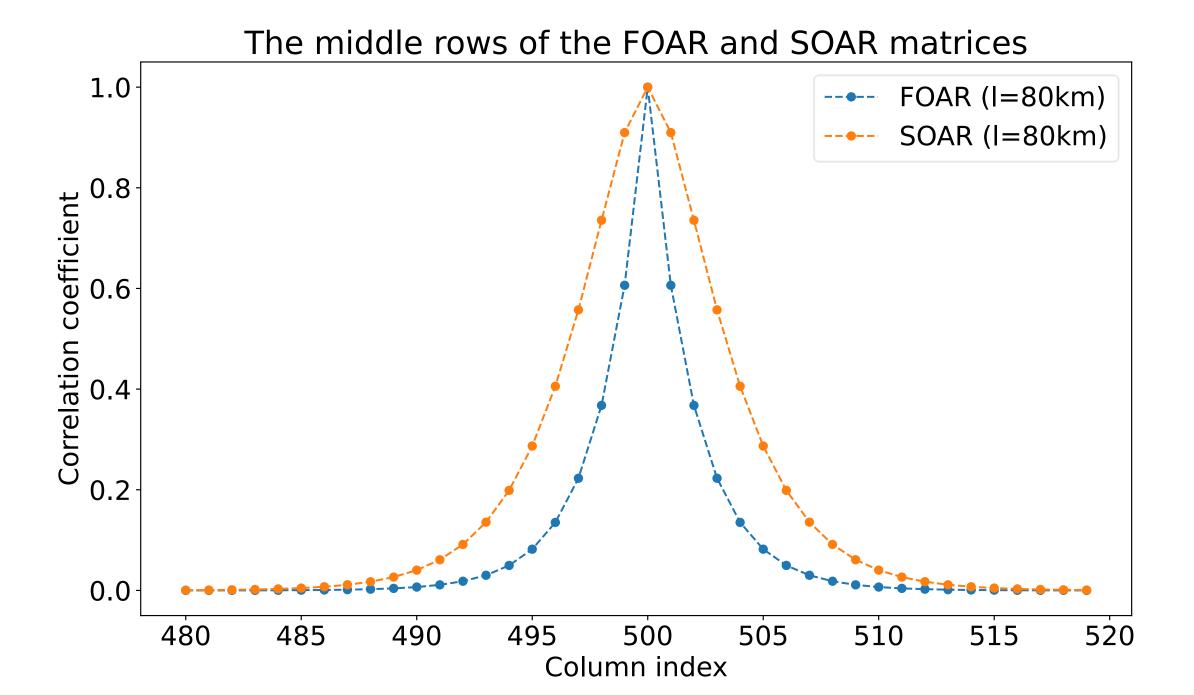
- Equally spaced model grid points on a latitude circle on the Earth
- Observations at alternate grid points
- Chordal distance
- Error covariance modelling

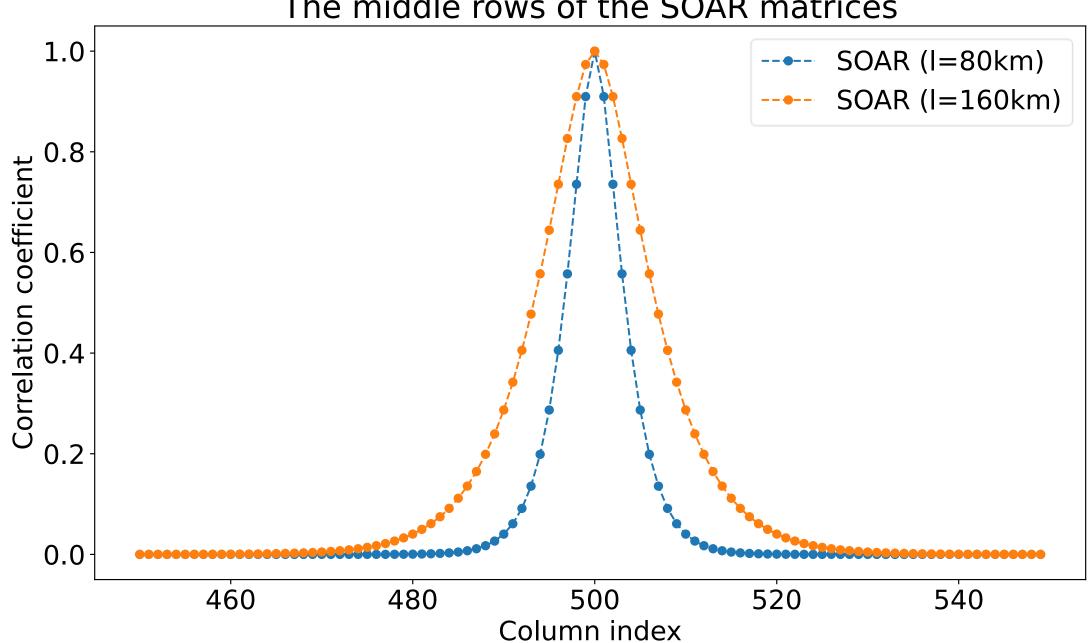
$$\mathbf{B} = \sigma_b^2 \mathbf{C}_{SOAR}(l_b)$$

 $\mathbf{R} = \sigma_o^2 \mathbf{C}_{FOAR}(l_o)$



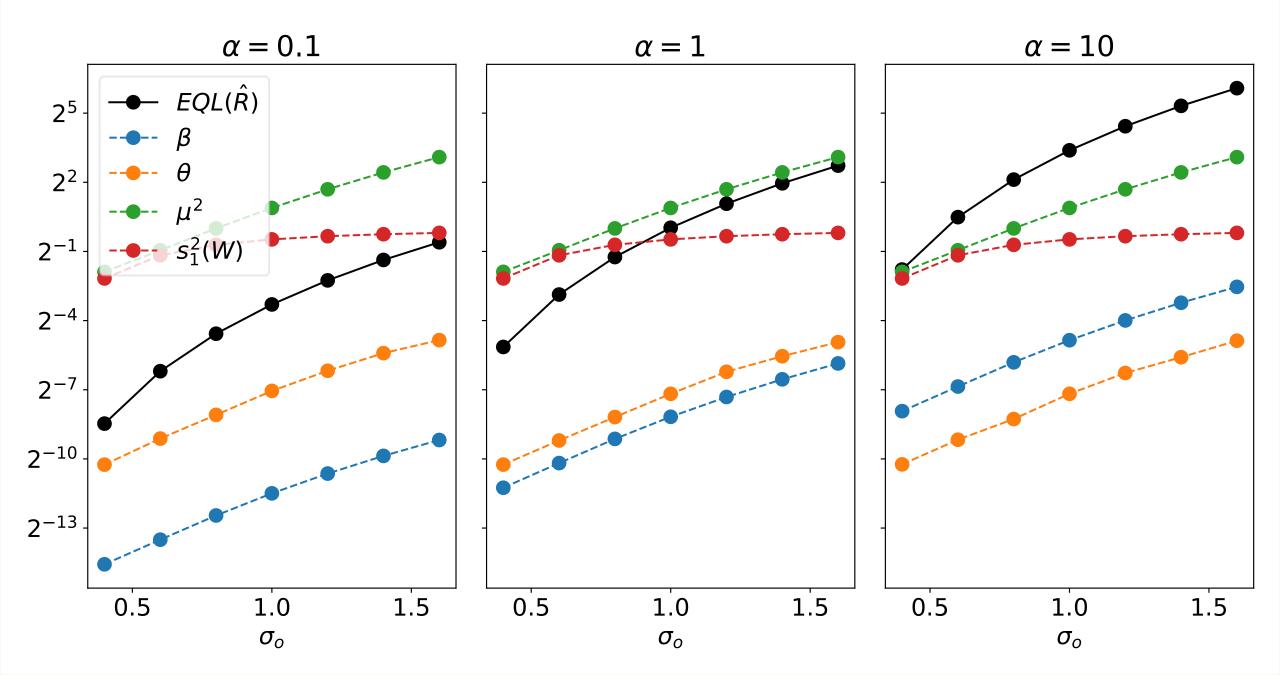
 C_{FOAR} and C_{SOAR} : first-order and second-order auto-regression correlation functions σ_b and σ_o : background and observation error standard deviations l_b and l_o : background and observation error correlation lengthscales 16



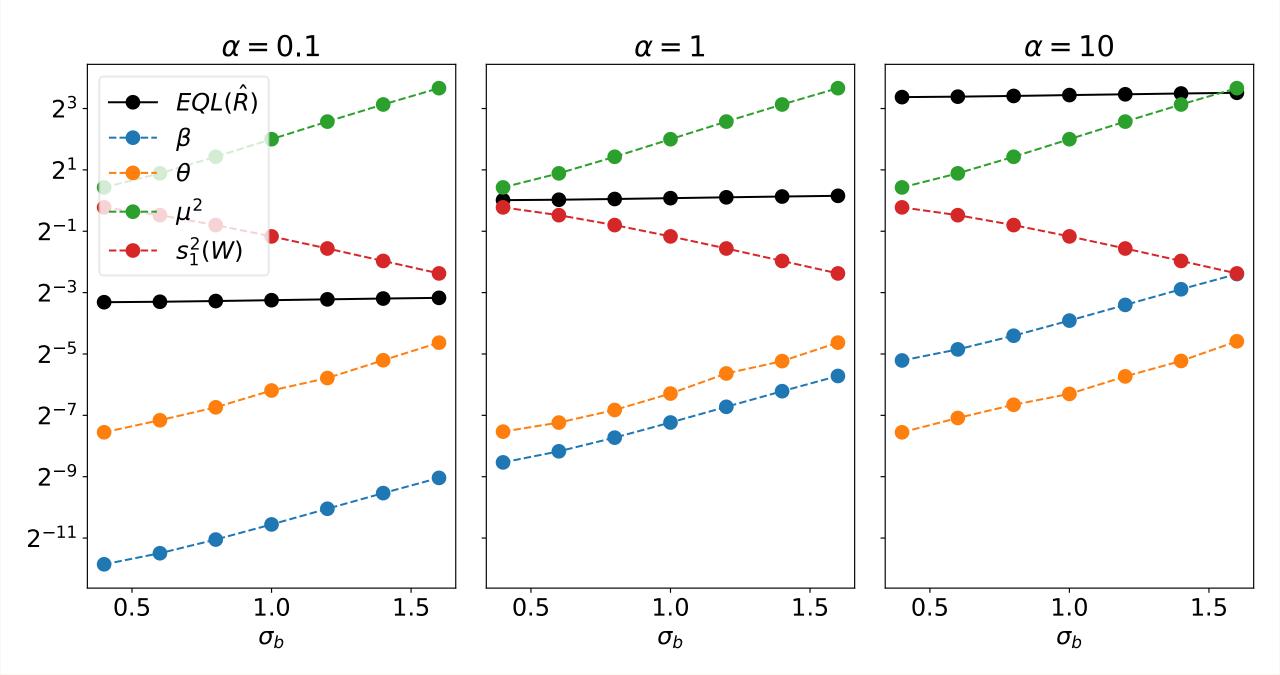


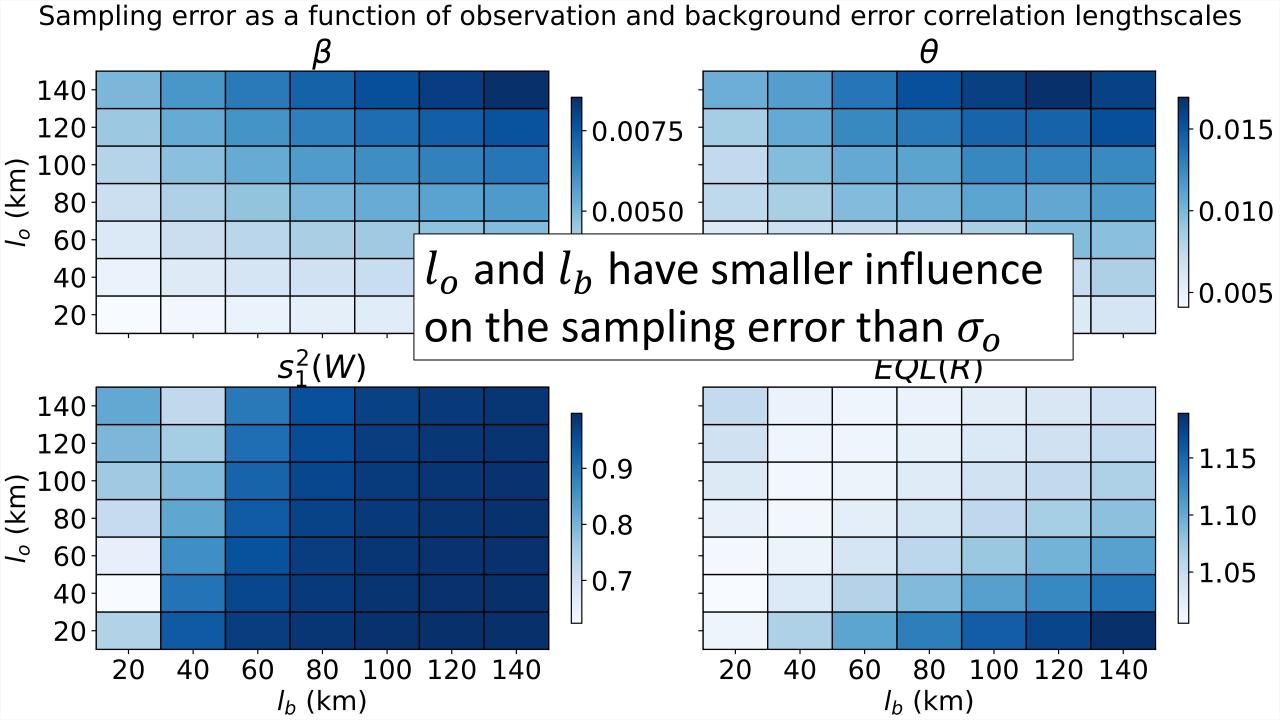
The middle rows of the SOAR matrices

Sampling error as a function of observation error standard deviation



Sampling error as a function of background error standard deviation





Cross-sectional dispersion of sample eigenvalues

• The spread of the sample eigenvalues around the mean of the true eigenvalues

$$\delta = \mathbb{E}\left[\sum_{i=1}^{m} (\lambda_i(\widehat{\mathbf{R}}) - \mu_R)^2\right], \mu_R = \frac{1}{m} \sum_{i=1}^{m} \lambda_i(\mathbf{R}).$$

• The variance of the true eigenvalues

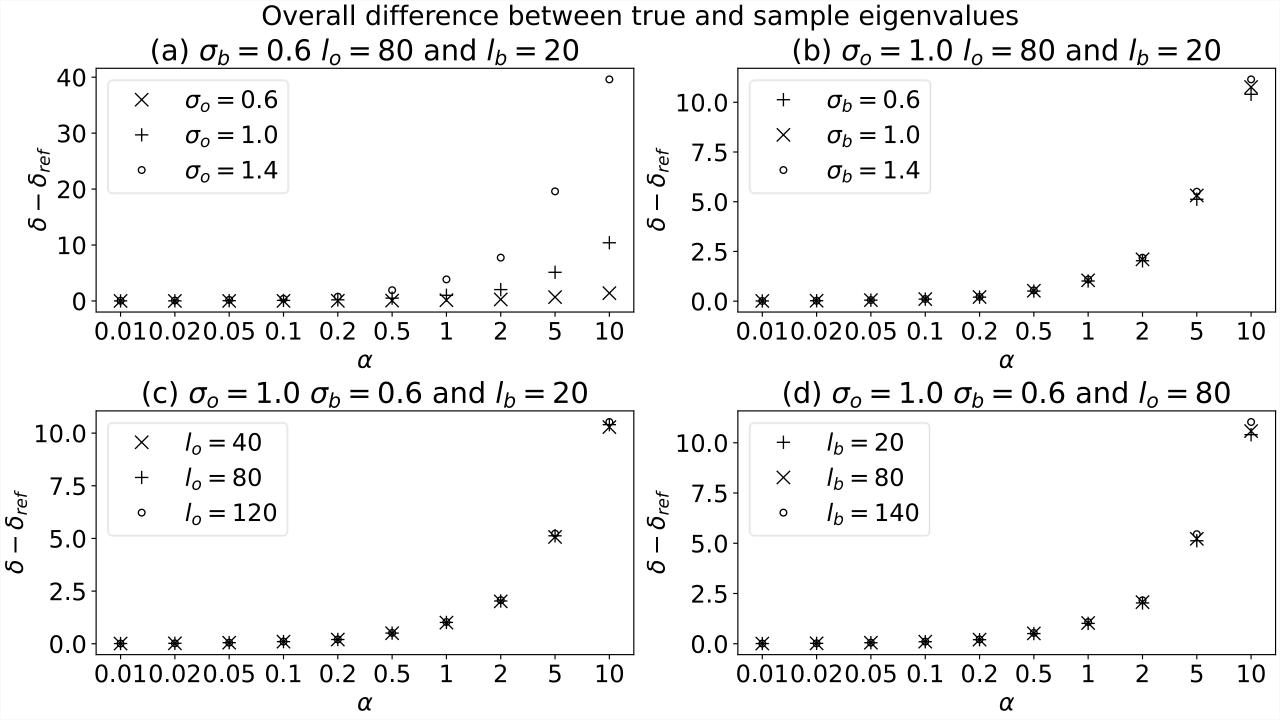
$$\delta_{ref} = \sum_{i=1}^{m} [\lambda_i(\mathbf{R}) - \mu_R)]^2$$

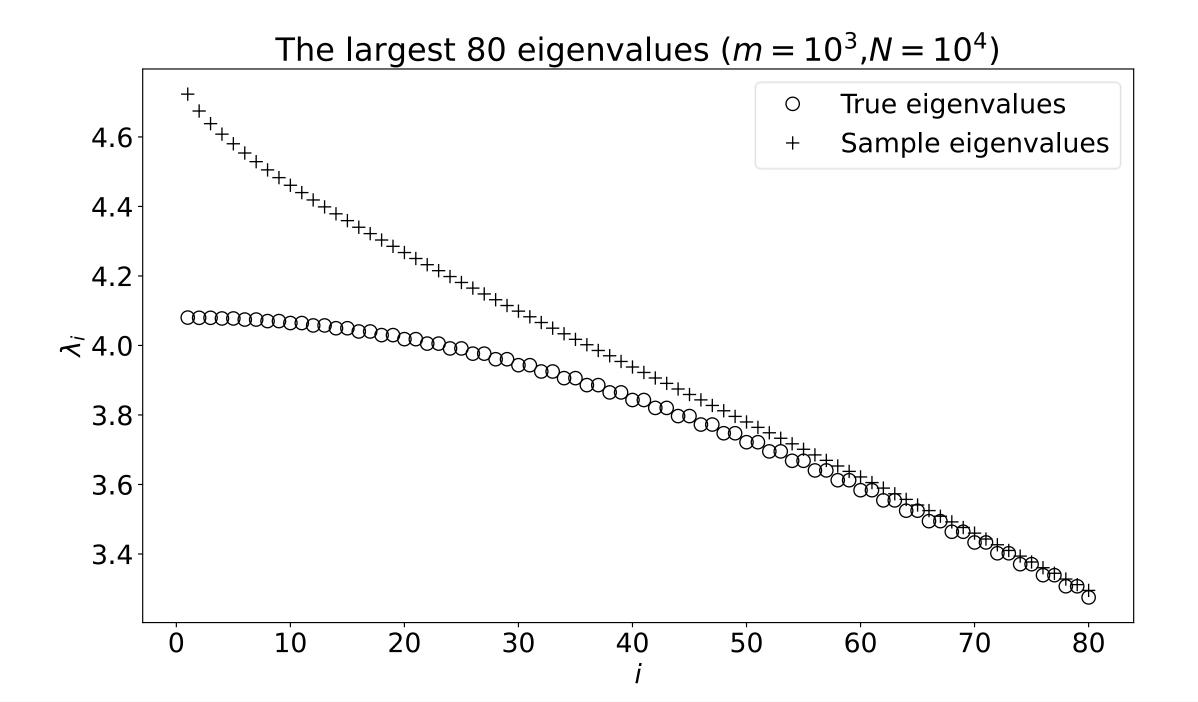
m

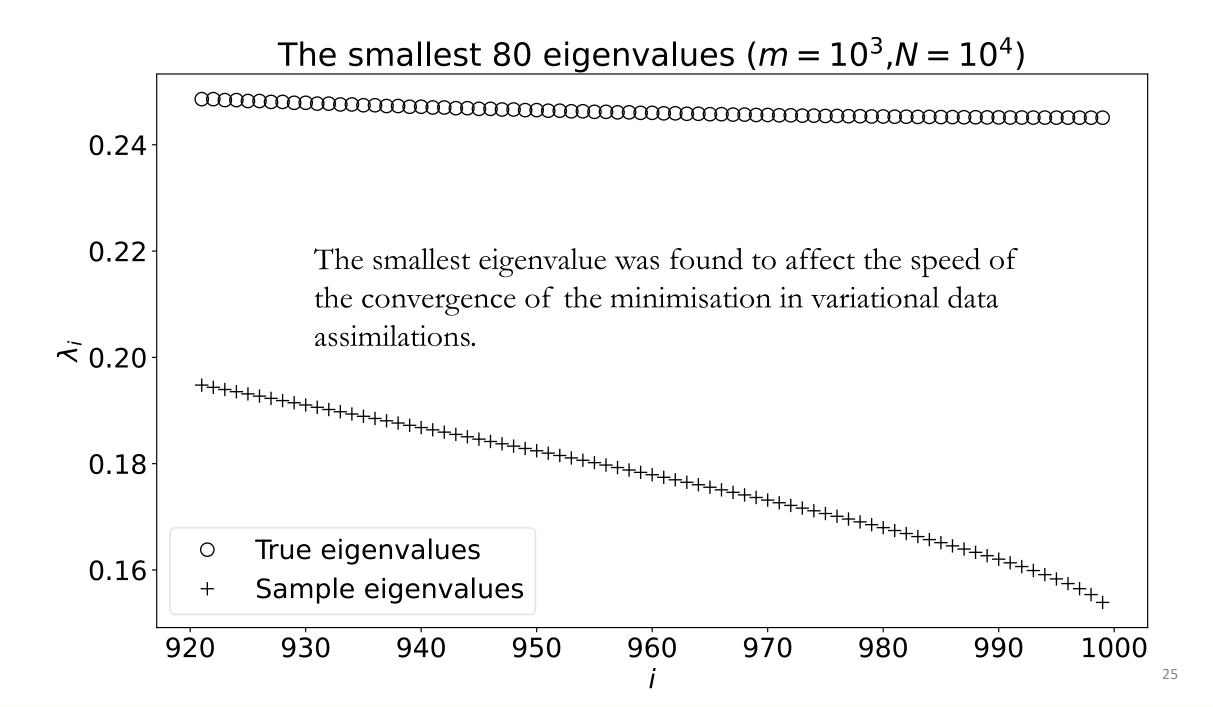
• Ledoit and Wolf (2004) showed that

$$\frac{1}{m} \mathbf{E} \left[\left\| \widehat{\mathbf{R}} - \mathbf{R} \right\|_{F}^{2} \right] = \frac{1}{m} \left(\delta - \delta_{ref} \right),$$

which indicates that δ converges to δ_{ref} as sampling error decreases.







Summary

- The sampling error is mainly affected by observation error standard deviation (compared to other error characteristics).
- Numerical results showed that the largest sample eigenvalues are greater than the true values and the smallest sample eigenvalues are smaller than the true values.
- Our results can provide guidance in deciding on appropriate sample sizes and choosing parameters for matrix reconditioning techniques.

Reference

- G. Desroziers, L. Berre, B. Chapnik, and P. Poli (2005). Diagnosis of observation, background and analysis-error statistics in observation space. QJRMS.
- O. Ledoit and M. Wolf (2004). A well-conditioned estimator for largedimensional covariance matrices. Journal of Multivariate Analysis.
- J. A. Waller, S. L. Dance, and N. K. Nichols (2016). Theoretical insight into diagnosing observation error correlations using observation-minus-background and observation-minus-analysis statistics. QJRMS.
- Janjić, T, Bormann, N, Bocquet, M, Carton, JA, Cohn, SE, Dance, SL, Losa, SN, Nichols, NK, Potthast, R, Waller, JA, Weston, P (2018). On the representation error in data assimilation, QJRMS.