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Data Assimilation Framework
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Problem Formulation

Consider the following nonlinear problem

dx

dt
= F (x), x(t) ∈ Rn, t ∈ [0,T ].

Let 0 = t0 < t1 < · · · < tN−1 = T be an equidistant partition of
I = [0,T ] with tj = j∆t. Here we consider the Euler
time-discretization:

xj+1 = F (xj), xj ∈ Rn, j = 0, . . . ,N − 1,

where xj+1 = x(tj+1).
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Problem Formulation (continued)

- Let the sequence x := {x0, . . . , xN} be a true solution of the dynamical
model and presumed to be unknown.
- Suppose we are given a sequence of observations yj related to xj

yj = Hxj + ηj , yj ∈ Rb, j = 0, . . . ,N,

where H : Rn → Rb, b ≤ n is the observation operator and
ηj ∼ N (0, Γ) = (0, γ2I ).

The goal is looking for the approximation solution of dynamical model,
u = {u0, . . . , uN} such that

∥u− x∥ → 0
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Variational Methods

Variational data assimilation methods lead to the minimization of a
cost function involving quadratic forms based on the both the
background and observation covariance matrices.

▶ 3D-Var

J(x) =
1

2
(xb − x)TB−1(xb − x) +

1

2
(y − Hx)TR−1(y − Hx) (1)

▶ 4D-Var

J(x0) =
1

2
(xb − x0)

TB−1(xb − x0) +
1

2

N−1∑
j=0

(yj − Hxj)
TR−1(yj − Hxj)

s.t.

xj = F0,j(x0) (2)

J: Penalty (Fit to background+ Fit to observations)
xb: Background solution
B: Background error covariance
R: Observation error covariance
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Variational Methods (continued)

If the dynamical model is imperfect, the cost function contains an
extra term which is corresponding to the model error.

J(u0; yj) =
1

2
(u0 − xb)TB−1(u0 − xb) +

1

2

N∑
j=1

(yj − Huj)
TR−1(yj − Huj)

+
1

2

N∑
j=1

(uj − Fj(uj−1))
TQ−1(uj − Fj(uj−1)).

This cost function is weak-constraint, meaning that u does not have to
be exactly a model-trajectory.
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Least square problem and minimization

The nonlinear least squares problem

min
x

Φ(x) =
1

2
∥f (x)∥22, (3)

where x is an n-dimensional real vector.

If we define the ith component of f (x) to be fi (x) = F (ti , x)− yi , the solution
of (3) gives the best model fit to the data in the sense of minimum sum of
square errors.
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Least square problem and minimization (continued)

Assume that:
1. f : Rn → Rm is a nonlinear twice continuously Frechet differentiable
function. If we denote the Jacobian of the function f by J(x) := f ′(x). Then
the gradient of Φ(x) is given by

∇Φ(x) = J(x)T f (x),

2. There exist x∗ ∈ Rn such that J(x∗)T f (x∗) = 0

3. The Jacobian matrix J(x∗) at x∗ has full rank n.

Then, finding the stationary point of ϕ is equivalent to solving the gradient
equation

∇Φ(x) = J(x)T f (x) = 0.

Gauss-Newton Algorithm:

Step0. Choose and initial x0 ∈ Rn.
Step1. Repeat until convergence:

Step1.1. Solve J(x (k))TJ(x (k))s(k) = −J(x (k))T f (x (k)).

Step1.2. Set x (k+1) = x (k) + s(k), k := k + 1 and go to step 1.
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Minimization Problem

We are looking for the approximation solution of (4), u = {u0, . . . , uN}
such that

∥uj+1 − Fj(uj)∥ → 0, and ∥Huj − yj∥ → 0.

Therefore, the aim is to solve the following minimization problem:

min
u∈D(F )

1

2
{∥G (u)∥22 + α∥Hu− y∥22}, (4)

where Gj(u) = uj+1 − Fj(uj) and α is a parameter which plays a
significant role in the convergence of the Gauss-Newton iteration and has
to be chosen carefully in order to achieve either convergence or
boundedness of the solution.
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Minimization Problem (continued)

The method proceeds by the following Gauss-Newton iterations, starting
from some initial guess u(0):

u(k+1) = u(k) −
(
G ′T
k G

′

k + αHTH
)−1 (

G ′T
k Gk + αHT (Hu(k) − y)

)
,

where k denotes the index of the Gauss-Newton’s iteration.

G (u) = (G0(u),G1(u), · · · ,GN−1(u))
T , Gj(u) = uj+1 − Fj(uj),

for j = 0, · · · ,N − 1 and uj ∈ Rn.
Therefore G ′, the Jacobian of G , has an n(N − 1)× nN block structure:

G ′(u) =


−F

′

0(u0) I

−F
′

1(u1) I
. . .

. . .

−F
′

N−1(uN−1) I

 ,
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Noise-free observations

Here, we want to look at the convergence of the Gauss-Newton iterations to
the true solution.

Assumption
Consider that we have a sequence of noise free observations, i.e.,
η ≡ 0.Therefore the data yj+1 used in Gauss-Newton algorithm is found from
observing a true solution xj given by

xj+1 = F (xj), yj+1 = Hxj+1, j = 0, . . . ,N − 1,

in which H ̸= I .

Theorem
Let assume that the observations are noise-free and ∥e0∥2 := ∥u(0) − x∥2 < 1,

where u(0) is the initial guess for the iteration and x is the true solution.
Furthermore, assume that there exists L2 > 0 and 0 < λ < 2/L2 such that

∥G ′(u)− G ′(v)∥2 ≤ L2∥u − v∥2, ∀u, v ∈ Rn, (5)

∥(G ′(x)TG ′(x) + αHTH)−1G ′T (x)∥2 ≤ λ, ∀x ∈ Rn. (6)

Then the sequence u(k) converges to the true solution x.
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Proof

Let ek := u(k) − x. By using Guass-Newton iteration, we have

ek+1 = u(k+1) − x

= u(k) − (G ′TG ′ + αHTH)−1
(
G ′TG − αHT (y − Hu(k))

)
− x.

Using the following steps

▶ Hx = y and G(x) = 0

▶ Mean value theorem and Lipschitz condition on G ′

▶ ∥(G ′(x)TG ′(x) + αHTH)−1G ′T (x)∥2 ≤ λ

∥ek∥2 ≤ (
L2λ

2
)2

k−1∥e0∥2
k

2 .
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Noisy Observations

Since the noise-free observations is not a real assumption. We would like
to consider the problem with noisy observations. In this section, we
assume that we have a sparse and noisy observations, i.e, H ̸= I and
yj+1 = Hxj+1 + η, η ∼ N (0, Γ) = (0, γ2I ).

Theorem
Let assume that H ̸= I , η ̸= 0 and ∥e0∥2 := ∥u(0) − x∥2 < 1, where u(0)

is the initial guess for the iteration and x is the true solution. Moreover,
assume that there exists constants L2 > 0, 0 < α < 1, λ ≤ 1

2L2
and

β ≤ 1
2∥HTη∥ such that,

∥G ′(u)− G ′(v)∥2 ≤ L2∥u − v∥2, ∀u, v ∈ Rn,

∥(G ′(x)TG ′(x) + αHTH)−1∥2 ≤ β, ∀x ∈ Rn,

∥(G ′(x)TG ′(x) + αHTH)−1G ′T (x)∥2 ≤ λ, ∀x ∈ Rn.

Then ∥u(k) − x∥2 ≤ ck , where ck :=
∑k−1

i=0 (2αλL2)
2i .

Nazanin Abedini, Svetlana Dubinkina Data Assimilation 14/24



Noisy Observations

Since the noise-free observations is not a real assumption. We would like
to consider the problem with noisy observations. In this section, we
assume that we have a sparse and noisy observations, i.e, H ̸= I and
yj+1 = Hxj+1 + η, η ∼ N (0, Γ) = (0, γ2I ).

Theorem
Let assume that H ̸= I , η ̸= 0 and ∥e0∥2 := ∥u(0) − x∥2 < 1, where u(0)

is the initial guess for the iteration and x is the true solution. Moreover,
assume that there exists constants L2 > 0, 0 < α < 1, λ ≤ 1

2L2
and

β ≤ 1
2∥HTη∥ such that,

∥G ′(u)− G ′(v)∥2 ≤ L2∥u − v∥2, ∀u, v ∈ Rn,

∥(G ′(x)TG ′(x) + αHTH)−1∥2 ≤ β, ∀x ∈ Rn,

∥(G ′(x)TG ′(x) + αHTH)−1G ′T (x)∥2 ≤ λ, ∀x ∈ Rn.

Then ∥u(k) − x∥2 ≤ ck , where ck :=
∑k−1

i=0 (2αλL2)
2i .

Nazanin Abedini, Svetlana Dubinkina Data Assimilation 14/24



Numerical Experiment

The Lorenz 63 model is a chaotic dynamical system commonly
used as a test problem for data assimilation algorithms. The model
consists of three nonlinear, ordinary differential equations given as

dx1
dt

= σ(x2 − x1),
dx2
dt

= x1(ρ− x3)− x2,
dx3
dt

= x1x2 − bx3,

where σ = 10, b = 8
3 and ρ = 28.

In the following numerical experiments, a forward Euler method is
used to discretize the model equations using a time step
∆t = 0.005.
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Numerical Experiments ( continued)

Noise-Free Observations:
For the experiments in this section we generate a set of observations
computing a trajectory of Lorenz 63 on t ∈ [0, 20], using ∆t = 0.005 and
γ = 0. The observations of x1-variable only are drawn every ∆t = 0.05
which means the dynamical model Fj corresponds to 10 forward Euler
steps.

Error : ∥x− u∥2, cost function : 1
2∥G (u)∥22 + α

2 ∥Hu− y∥22.
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Numerical Experiments (continued)

Noisy Observations:
Here, we generate a set of noisy observations with γ2 = 0.1. The
observation matrix is, H=[1,0,0], which means the first variable x1 is
observed. In the following figures, we display error with respect to the
truth on the left, the green line in this figure is the bound which we
obtained in theorem 2. On the right, we display error for different values
of η. We can see that error goes to zero as γ → 0.
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Comparison with WC4DVar
The cost function for weak constraint 4-D Var is:

C(u0; yj ) =
1

2

N∑
j=1

(yj − Huj )
TR−1(yj − Huj ) +

1

2

N∑
j=1

(uj − Fj (uj−1))
TQ−1(uj − Fj (uj−1)). (7)

(8)

Figure 1: Application to L63. Error as a function of time: median (dashed line) +/- one standard deviation over 20
simulations with length of assimilation window, 5 (25 days). On the left: error with respect to the truth of
observed variables. On the right: error with respect to the truth of non-observed variables. The Gauss-Newton
method in grey, WC4DVar method in blue, and the observational error is in red.
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Lorenz 96 Model

The Lorenz 96 model is a dynamical system with dimension d ∈ N, formulated
by Edward Lorenz in 1996, which is completely determined by the equation for
the l-th variable as follows

ẋl = −xl−2xl−1 + xl−1xl+1 − xl + F , l = 1, . . . , d , (9)

where the dimension d and forcing F are parameters. Cyclic boundary
conditions are imposed. We implement the L96 model with the parameter
choices d = 40 and F = 8.
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Lorenz 96 Model (continued)

Noise-free Observations:

As we have noise free observations, they are obtained by a reference (true)
trajectory with partially observation operator, it means H ̸= I .
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Figure 2: Application to L96 with partially and noise free observations. On the left: Error of the Gauss-Newton
iteration with respect to the truth as a function of iterations: median (dashed line), +/- one standard deviation
(shadowed area) over 100 simulations. On the middle: Error of the Gauss-Newton method as a function of
iterations for different size of observations with α = 0.001, ∆t = 0.005. On the right:Cost function with respect
to iterations for different values of α with 20 observations and ∆t = 0.005.

Nazanin Abedini, Svetlana Dubinkina Data Assimilation 20/24



Lorenz 96 Model (continued)

Noise-free Observations:

As we have noise free observations, they are obtained by a reference (true)
trajectory with partially observation operator, it means H ̸= I .

0 10 20 30 40 50

iteration

10
-15

10
-10

10
-5

10
0

N
obs

 = 20

N
obs

 = 10

N
obs

 = 8

0 10 20 30 40 50 60 70

iterations

10
-15

10
-10

10
-5

10
0

c
o
s
t 
fu

n
c
ti
o
n

alpha = 0.004

alpha = 0.01

alpha = 0.02

Figure 2: Application to L96 with partially and noise free observations. On the left: Error of the Gauss-Newton
iteration with respect to the truth as a function of iterations: median (dashed line), +/- one standard deviation
(shadowed area) over 100 simulations. On the middle: Error of the Gauss-Newton method as a function of
iterations for different size of observations with α = 0.001, ∆t = 0.005. On the right:Cost function with respect
to iterations for different values of α with 20 observations and ∆t = 0.005.

Nazanin Abedini, Svetlana Dubinkina Data Assimilation 20/24



Lorenz 96 Model (continued)

Noise-free Observations:

As we have noise free observations, they are obtained by a reference (true)
trajectory with partially observation operator, it means H ̸= I .

0 10 20 30 40 50

iteration

10
-15

10
-10

10
-5

10
0

N
obs

 = 20

N
obs

 = 10

N
obs

 = 8

0 10 20 30 40 50 60 70

iterations

10
-15

10
-10

10
-5

10
0

c
o
s
t 
fu

n
c
ti
o
n

alpha = 0.004

alpha = 0.01

alpha = 0.02

Figure 2: Application to L96 with partially and noise free observations. On the left: Error of the Gauss-Newton
iteration with respect to the truth as a function of iterations: median (dashed line), +/- one standard deviation
(shadowed area) over 100 simulations. On the middle: Error of the Gauss-Newton method as a function of
iterations for different size of observations with α = 0.001, ∆t = 0.005. On the right:Cost function with respect
to iterations for different values of α with 20 observations and ∆t = 0.005.
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Comparison with WC4DVar

Figure 3: Application to L96. Error as a function of time: median (dashed line) +/- one standard deviation over 20
simulations with length of assimilation window, 1 (5 days). On the left: error with respect to the truth of observed
variables. On the right: error with respect to the truth of non-observed variables. The Gauss-Newton method in
grey, WC4DVar method in blue, and the observational error is in red.
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Summary and outlook

Summary

▶ The Gauss-Newton method for solving the nonlinear least
square problem is described.

▶ Deriving conditions for the convergence of this approximate
method for noise-free observations.

▶ Obtaining the boundedness of the approximate solution for
noisy observations under some conditions.

Outlook

▶ How much we can actually observe?
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Thank you!
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