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Outline
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• Invert for the continuous reservoir parameters: oil and 
gas saturations and clay content 

• Perform 2.5D inversion on top-reservoir using localised 
ensemble methods

• Condition on the seismic and well log data
• Provide more realistic uncertainty quantification by 

accounting for cementation and geology of the area

Goals
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Case: Alvheim field

Source: Rimstad et al. Hierarchical Bayesian lithology/fluid 
prediction: A North Sea case study

Traveltimes, top-reservoir
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Amplitude versus offset - AVO
• Amplitude variation

dependent on physical
properties at the interface

• Zoeppritz equations
• Shuey approximation
• Linear fit of changes in amplitude 

vs incidence angles 
• Extracting intercept and gradient

at top-reservoir
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Case: Alvheim AVO data at 
top-reservoir
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Case: Alvheim well log data
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Geophysical model

Prior model 

Forward model 
and likelihood
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• Forward model 
– Unconsolidated sand model
– Contact cement model

(Dvorkin-Nur)
– Gassmann relations
– Shuey approximation 

Zooming in on the seismic forward 
model 
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• Bayes rule 
𝑝 𝒙 𝒚 ∝ 𝑝 𝒚 𝒙 𝑝(𝒙)

• Prior model
𝑝 𝒙𝒆 ∼ 𝑁(𝝁, 𝚺)

• Likelihood
– Observation model: 𝐲𝒆 = 𝒉 𝒙𝒆 + 𝝐
– Non-linear forward model; dependent on depth, cementation

point, porosity
– 𝝐 ∼ 𝑁 𝟎, 𝑹 , 𝑹- block diagonal

Bayesian framework
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• Gaussian prior

• Mean trends estimated 
from well logs (depth dependence)

• Gaussian spatial correlation function
• Ensembles generated using the

FFT-routine
• Logistic transformation

Prior model
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Prior: mean and uncertainty from 
realisations
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Conditioning on well data
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Conditioning on well data
• Difference in saturation at

inline 624, xline 4928 for 
100 realisations

unconditioned conditioned
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Simulated seismic data
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• Approximate realisations of 
the posterior

• Localised Ensemble 
Transform Kalman Filter

Posterior approximation- EnKF
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• Localised IEnKS
• For each patch we run the

IEnKS for j number of 
iterations

• Data assimilation window 
(DAW) corresponds to the 
observation patch

Posterior approximation – IEnKS
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Posterior approximation – results(ref. case)
Observation patch: 16x16; Parameters 6x6;
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Posterior approximation – results
Observation patch: 9x9; Parameters: 6x6;
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Posterior approximation – results
Observation patch: 16x16; Parameters: 10x10;
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Posterior approximation – results
Cem depth: 2110 m 
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Posterior approximation – results
Cem depth: 2162 m 
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Posterior approximation – results
One iteration



27

Posterior approximation – results
Two iterations
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• Perform 2.5D inversion of the reservoir parameters
• Use localised ensemble methods to assimilate available

seismic data

• Validation of the results using seismic data and 
sensitivity analysis 

• Further improving forward model and conditioning on 
remaining well log data

Concluding remarks and further 
work


