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Problem Statement

We consider the parameter estimation problem using spatially distributed data.

Bayesian framework of Ensemble-based Data Assimilation is utilized.

Throughout the presentation, the parameters random vector is denoted by Z; the model
forecasts vector, being a non-linear function of Z, is denoted by Y, Y =M(Z); and the noisy
data are denoted by D.
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Motivation
Multilevel Data Assimilation

Large amounts of simultaneous data, like with 4D seismic data, enhance the negative effects
of Monte-Carlo errors in DA, such as underestimation of uncertainties

The conventional treatment is distance-based localization which regularizes the problem by
assuming that correlation between a parameter and a datum decreases by increase in distance
and vanishes when a critical distance is reached.

Lower-fidelity reservoir simulations will reduce computational cost and therefore allow for a
larger ensemble size, but will also increase numerical errors

Multilevel data assimilation attempts to obtain a better balance Monte-Carlo and numerical
errors by combining reservoir simulations with different fidelities

4 / 27



Motivation
Multilevel Data Assimilation

Large amounts of simultaneous data, like with 4D seismic data, enhance the negative effects
of Monte-Carlo errors in DA, such as underestimation of uncertainties

The conventional treatment is distance-based localization which regularizes the problem by
assuming that correlation between a parameter and a datum decreases by increase in distance
and vanishes when a critical distance is reached.

Lower-fidelity reservoir simulations will reduce computational cost and therefore allow for a
larger ensemble size, but will also increase numerical errors

Multilevel data assimilation attempts to obtain a better balance Monte-Carlo and numerical
errors by combining reservoir simulations with different fidelities

4 / 27



Motivation
Multilevel Data Assimilation

Large amounts of simultaneous data, like with 4D seismic data, enhance the negative effects
of Monte-Carlo errors in DA, such as underestimation of uncertainties

The conventional treatment is distance-based localization which regularizes the problem by
assuming that correlation between a parameter and a datum decreases by increase in distance
and vanishes when a critical distance is reached.

Lower-fidelity reservoir simulations will reduce computational cost and therefore allow for a
larger ensemble size, but will also increase numerical errors

Multilevel data assimilation attempts to obtain a better balance Monte-Carlo and numerical
errors by combining reservoir simulations with different fidelities

4 / 27



Motivation
Multilevel Data Assimilation

Large amounts of simultaneous data, like with 4D seismic data, enhance the negative effects
of Monte-Carlo errors in DA, such as underestimation of uncertainties

The conventional treatment is distance-based localization which regularizes the problem by
assuming that correlation between a parameter and a datum decreases by increase in distance
and vanishes when a critical distance is reached.

Lower-fidelity reservoir simulations will reduce computational cost and therefore allow for a
larger ensemble size, but will also increase numerical errors

Multilevel data assimilation attempts to obtain a better balance Monte-Carlo and numerical
errors by combining reservoir simulations with different fidelities

4 / 27



Motivation
Multilevel Data Assimilation

Large amounts of simultaneous data, like with 4D seismic data, enhance the negative effects
of Monte-Carlo errors in DA, such as underestimation of uncertainties

The conventional treatment is distance-based localization which regularizes the problem by
assuming that correlation between a parameter and a datum decreases by increase in distance
and vanishes when a critical distance is reached.

Lower-fidelity reservoir simulations will reduce computational cost and therefore allow for a
larger ensemble size, but will also increase numerical errors

Multilevel data assimilation attempts to obtain a better balance Monte-Carlo and numerical
errors by combining reservoir simulations with different fidelities

4 / 27



Multilevel Models

and Multilevel Data

Finest Grid

Most Accurate Model

Model Forecasts

Data

Medium Coarse

Med. Accurate Model

Model Forecasts

Data

Coarsest Grid

Least Accurate Model

Model Forecasts

Data

Dl = U l
LDL

5 / 27



Multilevel Models

and Multilevel Data

Finest Grid

Most Accurate Model

Model Forecasts

Data

Medium Coarse

Med. Accurate Model

Model Forecasts

Data

Coarsest Grid

Least Accurate Model

Model Forecasts

Data

Dl = U l
LDL

5 / 27



Multilevel Models

and Multilevel Data

Finest Grid

Most Accurate Model

Model Forecasts

Data

Medium Coarse

Med. Accurate Model

Model Forecasts

Data

Coarsest Grid

Least Accurate Model

Model Forecasts

Data

Dl = U l
LDL

5 / 27



Multilevel Models and Multilevel Data

Finest Grid

Most Accurate Model

Model Forecasts

Data

Medium Coarse

Med. Accurate Model

Model Forecasts

Data

Coarsest Grid

Least Accurate Model

Model Forecasts

Data

Dl = U l
LDL

5 / 27



Multilevel Models and Multilevel Data

Finest Grid

ML

YL

DL

Medium Coarse

Ml

Yl

Dl

Coarsest Grid

M1

Y1

D1

Dl = U l
LDL

5 / 27



Multilevel Models and Multilevel Data

Finest Grid

ML

YL

DL

Medium Coarse

Ml

Yl

Dl

Coarsest Grid

M1

Y1

D1

Dl = U l
LDL 5 / 27



Developed Multilevel Methods

Simultaneous MLDA Algorithms

ML Modeling Error Correction Schemes

Sequential MLDA Algorithms
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Simultaneous Multilevel Data Assimilation
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Simultaneous MLDA

Nezhadali, M., et al. “A Novel Approach to Multilevel Data

Assimilation.” ECMOR XVII. Vol. 2020. No. 1. European

Association of Geoscientists & Engineers, 2020.

Nezhadali, Mohammad, et al. “Iterative multilevel
assimilation of inverted seismic data.” Computational
Geosciences 26.2 (2022): 241-262.
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ML Modelling Error Correction Schemes
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ML Modeling Error Correction Schemes

Nezhadali, Mohammad, et al. “Multilevel Assimilation of
Inverted Seismic Data With Correction for Multilevel
Modeling Error.” (2021).
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Sequential Multilevel Data Assimilation
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Sequential MLDA vs. ESMDA

ESMDA

SMLES
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Sequential MLDA vs. ESMDA

ESMDA SMLES
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Numerical Experiments

Two experiments pertaining to subsurface flow are presented.

Unknown parameter field: flow conductivity

Observation data: grid data at three different times

Each experiment has four algorithm runs:
SMLES, IES-LOC, ESMDA-LOC, ESMDA-REF

The gold standard for comparison will be vanilla ESMDA with an exceedingly large ensemble
size (10000 members). This is run to obtain the best DA results that can be obtained by
ESMDA (ESMDA-REF).
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Case I
Prior Model–flow conductivity

Prior Samples–log K

variance mean range aniso angle type
1 5 10 0.7 -30 spherical

Variogram for prior draw
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Case I–Posterior Parameters
Mean field

(a) ESMDA-REF (b) SMLES

(c) ESMDA-LOC (d) IES-LOC 17 / 27



Case I–Posterior Parameters
Variance field

(a) ESMDA-REF (b) SMLES∗

(c) ESMDA-LOC (d) IES-LOC

The only difference between SMLES-S and SMLES-S∗ is in their scales.
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Case I–Posterior Model Forecasts
Mean field

(a) ESMDA-REF (b) SMLES

(c) ESMDA-LOC (d) IES-LOC 19 / 27



Case I–Posterior Model Forecasts
Variance field

(a) ESMDA-REF (b) SMLES

(c) ESMDA-LOC (d) IES-LOC 20 / 27



Case II
Prior Model–Flow conductivity

Prior Samples–log K

The variograms of permeability zones for prior draw

variance mean range ratio angle type
Variogram 1 1 5 30 0.7 -30 cubic
Variogram 2 1 5 10 0.4 -70 cubic
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Case II–Posterior Parameters
mean field

(a) ESMDA-REF (b) SMLES

(c) ESMDA-LOC (d) IES-LOC 22 / 27



Case II–Posterior Parameters
variance field

(a) ESMDA-REF (b) SMLES∗

(c) ESMDA-LOC (d) IES-LOC 23 / 27



Case II–Posterior Model Forecasts
mean field

(a) ESMDA-REF (b) SMLES

(c) ESMDA-LOC (d) IES-LOC 24 / 27



Case II–Posterior Model Forecasts
variance field

(a) ESMDA-REF (b) SMLES

(c) ESMDA-LOC (d) IES-LOC 25 / 27



Current and Further Work

Customizing MLDA algorithms for realistic cases:

- Inversion of large correlated covariance matrices with the help of SPDEs
- Hybridizing MLDA with localization

Implementation on realistic cases:

- Implementing robust grid-coarsening and upscaling techniques
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Thanks for your attention
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