Multilevel Data Assimilation moving towards realistic petroleum reservoir problems

Mohammad Nezhdali ^{1,2} Tuhin Bhakta ¹ Kristian Fossum ¹ Trond Mannseth ¹

¹NORCE Norwegian Research Centre

²University of Bergen

June 2, 2022

Outline

Problem Statement

Motivation

Multilevel Models and Multilevel Data

Multilevel Data Assimilation

Numerical Experiment

Current and Further work

Problem Statement

We consider the parameter estimation problem using spatially distributed data.

We consider the parameter estimation problem using spatially distributed data.

Bayesian framework of Ensemble-based Data Assimilation is utilized.

We consider the parameter estimation problem using spatially distributed data.

Bayesian framework of Ensemble-based Data Assimilation is utilized.

Throughout the presentation, the parameters random vector is denoted by Z; the model forecasts vector, being a non-linear function of Z, is denoted by Y, $Y = \mathcal{M}(Z)$; and the noisy data are denoted by D.

Motivation

Multilevel Data Assimilation

Motivation Multilevel Data Assimilation

Large amounts of simultaneous data, like with 4D seismic data, enhance the negative effects of Monte-Carlo errors in DA, such as underestimation of uncertainties

Motivation Multilevel Data Assimilation

Large amounts of simultaneous data, like with 4D seismic data, enhance the negative effects of Monte-Carlo errors in DA, such as underestimation of uncertainties

The conventional treatment is distance-based localization which regularizes the problem by assuming that correlation between a parameter and a datum decreases by increase in distance and vanishes when a critical distance is reached.

Large amounts of simultaneous data, like with 4D seismic data, enhance the negative effects of Monte-Carlo errors in DA, such as underestimation of uncertainties

The conventional treatment is distance-based localization which regularizes the problem by assuming that correlation between a parameter and a datum decreases by increase in distance and vanishes when a critical distance is reached.

Lower-fidelity reservoir simulations will reduce computational cost and therefore allow for a larger ensemble size, but will also increase numerical errors

Large amounts of simultaneous data, like with 4D seismic data, enhance the negative effects of Monte-Carlo errors in DA, such as underestimation of uncertainties

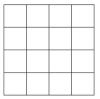
The conventional treatment is distance-based localization which regularizes the problem by assuming that correlation between a parameter and a datum decreases by increase in distance and vanishes when a critical distance is reached.

Lower-fidelity reservoir simulations will reduce computational cost and therefore allow for a larger ensemble size, but will also increase numerical errors

Multilevel data assimilation attempts to obtain a better balance Monte-Carlo and numerical errors by combining reservoir simulations with different fidelities

Multilevel Models

Finest Grid



Medium Coarse

Coarsest Grid

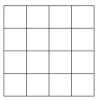
Most Accurate Model

Med. Accurate Model

Least Accurate Model

Multilevel Models

Finest Grid



Medium Coarse

Coarsest Grid

Most Accurate Model

Med. Accurate Model

Least Accurate Model

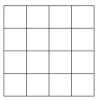
Model Forecasts

Model Forecasts

Model Forecasts

Multilevel Models

Finest Grid



Medium Coarse

Coarsest Grid

Most Accurate Model

Med. Accurate Model

Least Accurate Model

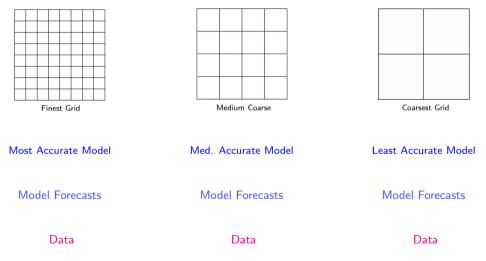
Model Forecasts

Model Forecasts

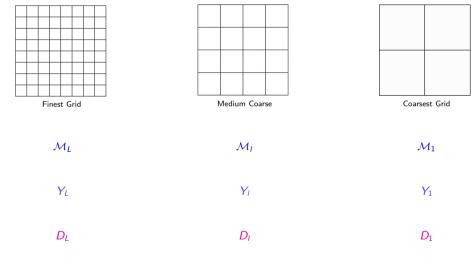
Model Forecasts

Data

Multilevel Models and Multilevel Data

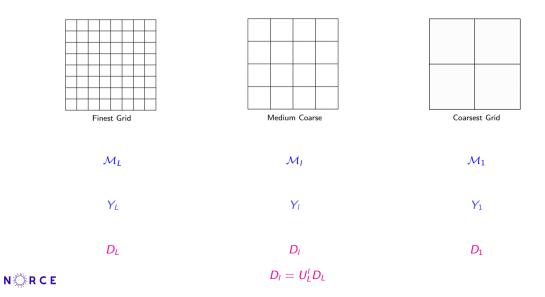


Multilevel Models and Multilevel Data



N 💭 R C E

Multilevel Models and Multilevel Data



5 / 27

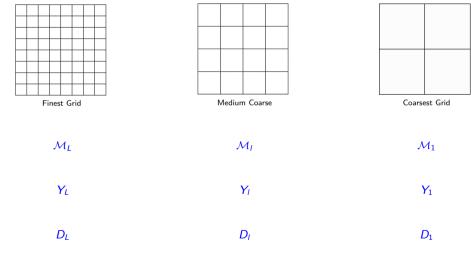
Developed Multilevel Methods

Simultaneous MLDA Algorithms

ML Modeling Error Correction Schemes

Sequential MLDA Algorithms

Simultaneous Multilevel Data Assimilation



Simultaneous MLDA

Nezhadali, M., et al. "A Novel Approach to Multilevel Data Assimilation." ECMOR XVII. Vol. 2020. No. 1. European Association of Geoscientists & Engineers, 2020.

Nezhadali, Mohammad, et al. "Iterative multilevel assimilation of inverted seismic data." Computational Geosciences 26.2 (2022): 241-262.

Simultaneous MLDA

Nezhadali, M., et al. "A Novel Approach to Multilevel Data Assimilation." ECMOR XVII. Vol. 2020. No. 1. European Association of Geoscientists & Engineers, 2020.

Nezhadali, Mohammad, et al. "Iterative multilevel assimilation of inverted seismic data." Computational Geosciences 26.2 (2022): 241-262.

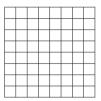
Developed Multilevel Methods

Simultaneous MLDA Algorithms

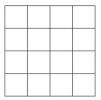
ML Modeling Error Correction Schemes

Sequential MLDA Algorithms

ML Modelling Error Correction Schemes



Finest Grid



Medium Coarse

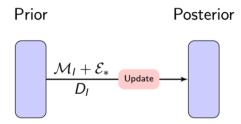
 $D_I = U_L^I D_L$ $\zeta_I = U_L^I Y_L - Y_I$

Coarsest Grid

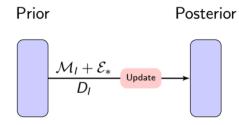
 $\zeta = 0$

 $\varepsilon \approx \zeta$

ML Modeling Error Correction Schemes



ML Modeling Error Correction Schemes



Nezhadali, Mohammad, et al. "Multilevel Assimilation of Inverted Seismic Data With Correction for Multilevel Modeling Error." (2021).

Developed Multilevel Methods

Simultaneous MLDA Algorithms

ML Modeling Error Correction Schemes

Sequential MLDA Algorithms

Sequential Multilevel Data Assimilation

 \mathcal{M}_1

 Y_1

Sequential Multilevel Data Assimilation

Medium Coarse

 \mathcal{M}_{I}

 Y_l

 D_l

Sequential Multilevel Data Assimilation

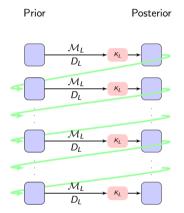
Finest Grid

 \mathcal{M}_L

 Y_L

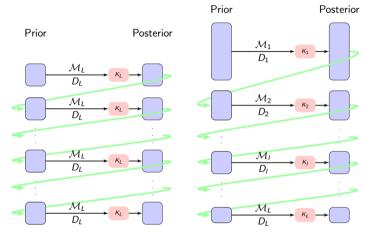
 D_L

Sequential MLDA vs. ESMDA



ESMDA

Sequential MLDA vs. ESMDA



SMLES

Numerical Experiments

Two experiments pertaining to subsurface flow are presented.

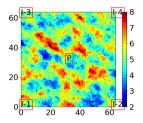
Unknown parameter field: flow conductivity

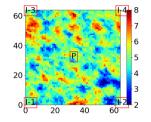
Observation data: grid data at three different times

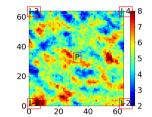
Each experiment has four algorithm runs: SMLES, IES-LOC, ESMDA-LOC, ESMDA-REF

The gold standard for comparison will be vanilla ESMDA with an exceedingly large ensemble size (10000 members). This is run to obtain the best DA results that can be obtained by ESMDA (ESMDA-REF).

Case I Prior Model-flow conductivity







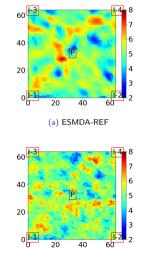
Prior Samples–log K

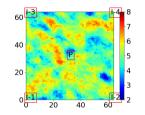
Π	variance	mean	range	aniso	angle	type
	1	5	10	0.7	-30	spherical

Variogram for prior draw

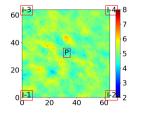
Case I–Posterior Parameters

Mean field



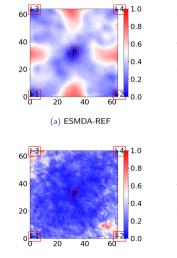


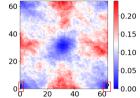
(b) SMLES



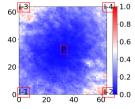
Case I–Posterior Parameters

Variance field





(b) SMLES*

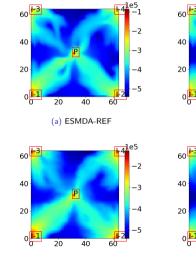


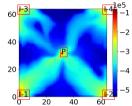
(c) ESMDA-LOC

(d) IES-LOC

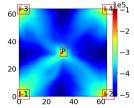
Case I–Posterior Model Forecasts

Mean field



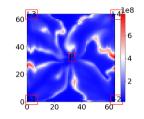


(b) SMLES

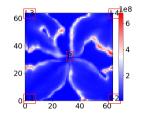


Case I–Posterior Model Forecasts

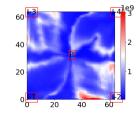
Variance field

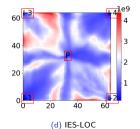


(a) ESMDA-REF



(b) SMLES

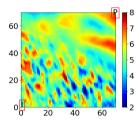


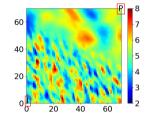


(c) ESMDA-LOC

20 / 27

Case II Prior Model–Flow conductivity





The variograms of permeability zones for prior draw

	variance	mean	range	ratio	angle	type
Variogram 1	1	5	30	0.7	-30	cubic
Variogram 2	1	5	10	0.4	-70	cubic

8

6

5

60

60

40

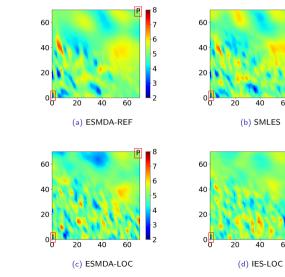
20

σ

20 40

Case II–Posterior Parameters

mean field



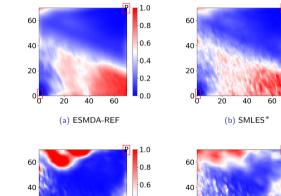
- 4

22 / 27

Case II–Posterior Parameters

variance field

N 🔿 R C E

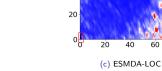


0.4

0.2

0.0

40 60





0.4 0.3

0.2

0.1

0.0

1.0

0.8

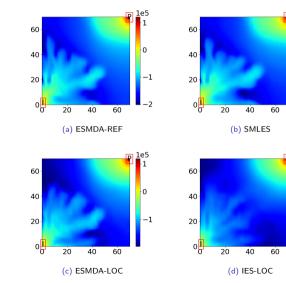
0.6

0.4

0.2

0.0

Case II–Posterior Model Forecasts mean field



<u>1</u>e5

0

-1

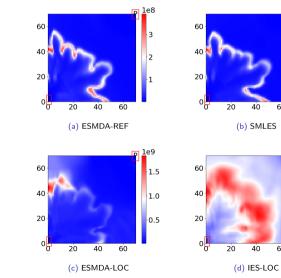
-2

le5

0

-1

Case II-Posterior Model Forecasts variance field



<u>1</u>e8

3

2

.e9

5 4

3

60

60

N 🔿 R C E

25 / 27

Customizing MLDA algorithms for realistic cases:

- Inversion of large correlated covariance matrices with the help of SPDEs
- Hybridizing MLDA with localization

Customizing MLDA algorithms for realistic cases:

- Inversion of large correlated covariance matrices with the help of SPDEs
- Hybridizing MLDA with localization

Implementation on realistic cases:

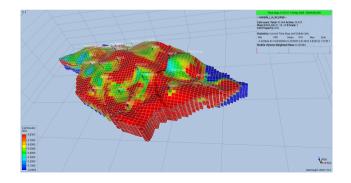
- Implementing robust grid-coarsening and upscaling techniques

Customizing MLDA algorithms for realistic cases:

- Inversion of large correlated covariance matrices with the help of SPDEs
- Hybridizing MLDA with localization

Implementation on realistic cases:

- Implementing robust grid-coarsening and upscaling techniques

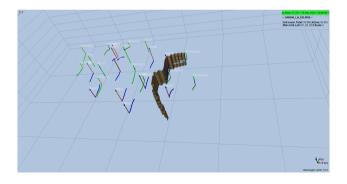


Customizing MLDA algorithms for realistic cases:

- Inversion of large correlated covariance matrices with the help of SPDEs
- Hybridizing MLDA with localization

Implementation on realistic cases:

- Implementing robust grid-coarsening and upscaling techniques



Thanks for your attention

