

Handling Sparse Observations in Ensemble-based Filtering

With an Application to Drift Trajectory Forecasting

Florian Beiser Håvard Heitlo Holm Jo Eidsvik

EnKF Workshop 2022, Balestrand

Technology for a better society

Francesco Silva yesterday evening in front of the hotel

Motivation: Search-and-rescue at sea

- Define search areas
 - Forecast drift trajectory and associated uncertainty
 - Efficient computational models
- In-situ buoy data
 - Becoming available during missions
 - Spatially very sparse observations
- Reduce uncertainty by data assimilation
 - Updating and re-running forecasts
 - Efficient and tailored ensemble methods

SINTEF

Handling Sparse Observations in Ensemble-based Filtering

- 1. Simplified Ocean Models
- 2. Data Assimilation Methods
 - Tailored localization for sparse observations (LETKF)
 - Implicit equal-weight particle filter (IEWPF)
- 3. Comparison
 - Benchmark experiment
 - Skill score assessment

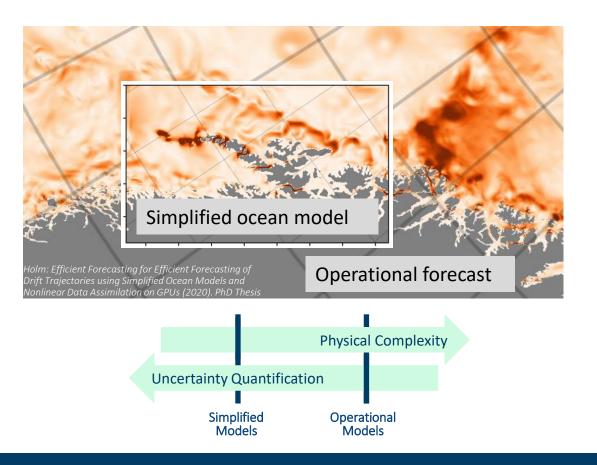
Florian Beiser^{1,2,*}, Håvard Heitlo Holm¹, Jo Eidsvik²

¹ SINTEF Digital, Norway

² Norwegian University of Science and Technology, Norway

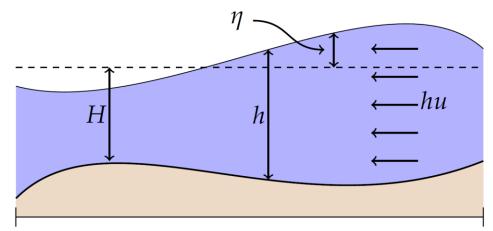
* florian.beiser@sintef.no

- Operational forecast machinery
 - Complex physical models
 - Multiple types of observations
- Complementary approach
 - Modelling short term physics
 - Initialised from operational forecasts
- Probabilistic forecasts
 - Enabling larger ensembles
 - Improved statistical explanatory power



Rotational Shallow Water Equation					
$ \begin{bmatrix} \eta \\ hu \\ hv \end{bmatrix}_{t} + \begin{bmatrix} hu \\ hu^{2} + 1/2 gh^{2} \\ huv \end{bmatrix}_{x} $	$+ \begin{bmatrix} hv \\ huv \\ hv^2 + 1/2 gh^2 \end{bmatrix}$	$ \begin{vmatrix} 0 \\ fhv \\ -fhu \end{vmatrix} $	$+ \begin{bmatrix} 0\\ghB_x\\ghB_y\end{bmatrix}$		

- Assumptions
 - Depth-integrated quantities
 - Barotropic dynamics
- Hyperbolic conservation law \rightarrow Conserved $\mathbf{x} = [\eta, hu, hv]^T$
- Parallelised numerics using FVM on GPU
 → Computationally highly efficient model



Holm: Efficient Forecasting for Efficient Forecasting of Drift Trajectories using Simplified Ocean Models and Nonlinear Data Assimilation on GPUs (2020). PhD Thesis

Data Assimilation Problem

Spatiotemporal State	Model	Observation	Ensemble Approach
$x^n = x(t^n, s)$	$x^{n,f} = \mathcal{M}(x^{n-1}) + v^n$	$y^n = H(x^n) + \varepsilon^n$	$p(\mathbf{x}^n \mathbf{y}^{1:n})$
• Very high-dimensional N_{χ}	 Non-linear model <i>M</i> Model error νⁿ ~ <i>N</i>(0, Q) 	 Very low dimensional N_y N_y ≪ N_x Observation error εⁿ ~ 𝒴(0, ℝ) 	• Estimated by a set of realisations $x_e^n, e = 1,, N_e$
 Ocean current and sea surface level 	Simplified ocean model	Buoy measurements	

Local Ensemble Transform Kalman Filter (LETKF)

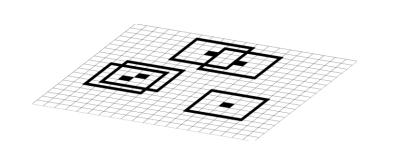
- LETKF common in operational numerical weather forecasting
- ETKF linear data assimilation method
- Small ensemble sizes can lead to spurious correlations
- Localisation statistically and physically motivated

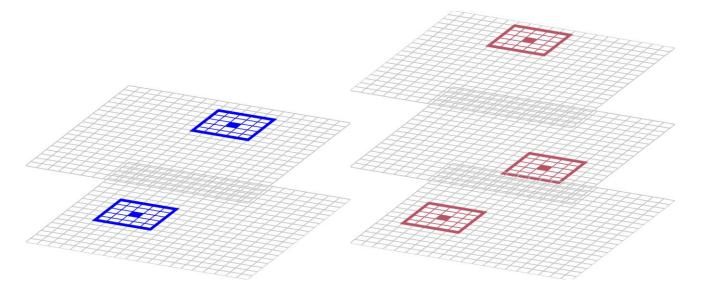
Classical Observation Localisation¹

The analysis of a certain point in space is only influenced by the observations in its neighbourhood.

Localisation for Sparse Observation

A certain observation influences only the analyses of the points in space within its neighbourhood.





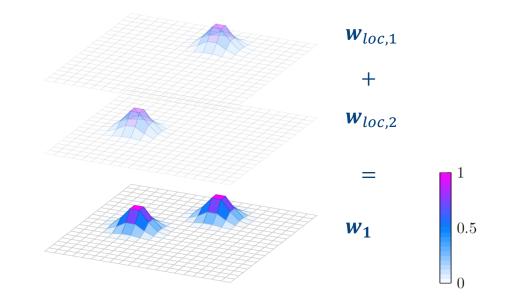
- Forecast $x_e^{n,f}$ in global domain
- Batches of "uncorrelated" observations
- ETKF analyses $\mathbf{x}_{e}^{n,a}$ in local domains independently
- Serial processing of observation batches

Reconstructing Global Analysis State

Intermediate global analysis

$$x_e^{n,a,1} = (1 - w_1) x_e^{n,f} + w_1 \left(\sum_{j \in B_1} x_e^{n,a}(j) \right)$$

where w_1 constructed by local weights $w_{loc,i}$ around each observation in batch B_1



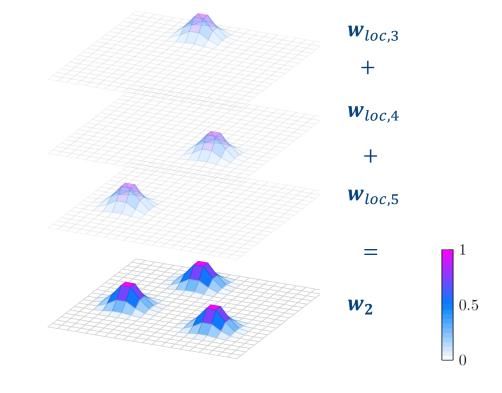
Gaspari-Cohn function as $\boldsymbol{w}_{loc,i}$

Reconstructing Global Analysis State

Final global analysis

$$x_e^{n,a} = (1 - w_2) x_e^{n,a,1} + w_2 \left(\sum_{i \in B_2} x_e^{n,a}(j) \right)$$

where w_2 constructed by local weights $w_{loc,i}$ around each observation in batch B_2



Gaspari-Cohn function as $\boldsymbol{w}_{loc,i}$

- Counteract overfitting by inflation
- E.g., when data very very sparse
- Keeping more spread in analysis
- Introduction of parameter $\phi \in [0,1]$

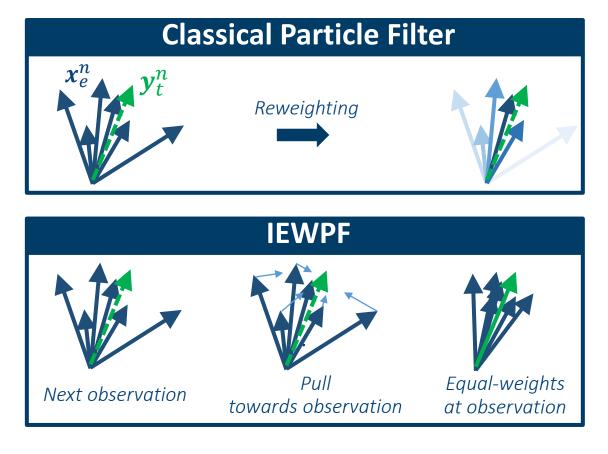
Inflated Weights

$$\boldsymbol{w}_{b}^{\text{infl}} = \sum_{j \in \mathcal{B}_{b}} \boldsymbol{\phi} \, \boldsymbol{w}_{\text{loc},j}$$

- $\phi = 0$: Monte-Carlo
- $\phi = 1$: Scheme without localisation

Implicit equal-weight particle filter (IEWPF)²

- Non-linear data assimilation method
- Actively uses model error term to steer ensemble towards observation
 - Computes $\mathbf{Q}\mathbf{H}^{\mathsf{T}}$
- Ensures equal weights throughout time
- IEWPF avoids filter degeneracy
 - Applicable to high-dimensional systems

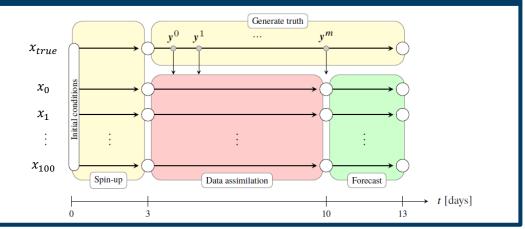


Computing $\mathbf{Q}\mathbf{H}^{\top}$

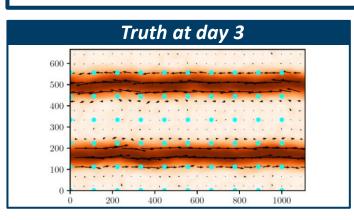
- No ensemble approximation in optimal proposal pull
 - No spurious correlations
- Highly dependent on the structure of Q

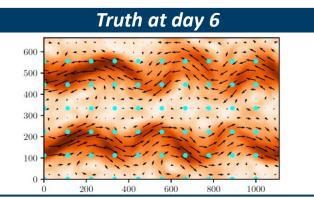
Localisation	Sparse Observations
 Correcting only in correlation radius of Q Built-in localisation 	 If correlation ranges of observations do not overlap, then updates independent

- Identical twin
- Synthetic truth
- \rightarrow Perfect model with known ground truth

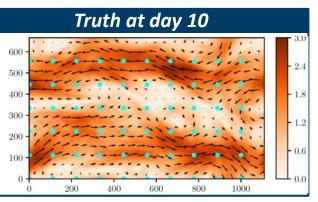


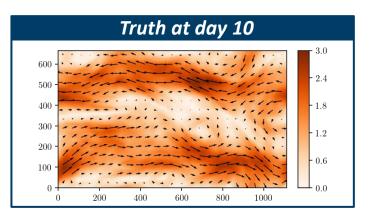
• Observing *u* and *v*

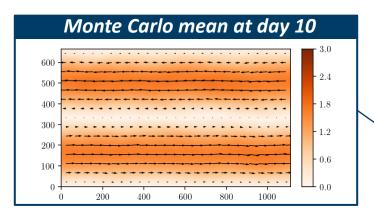




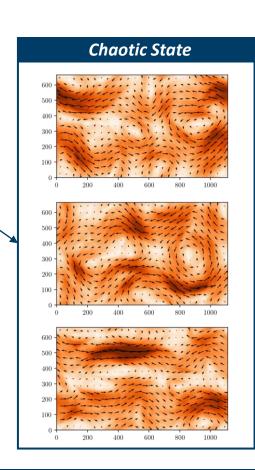
Set-Up







- Chaos develops after few simulation days
- 120 measured quantities per observation to assimilate into 450.000 state variables

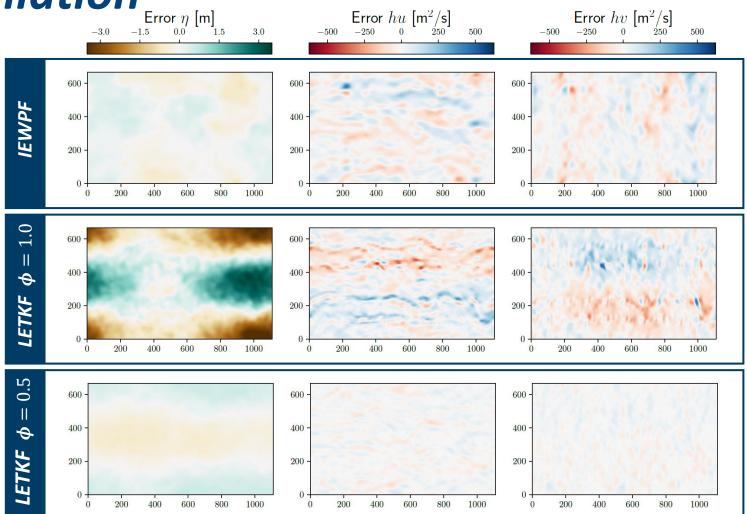


Numerical Results State Assimilation

 $\overline{x} - x_{true}$

Error

- Evaluated after day 10
- Assesses calibration of ensemble mean

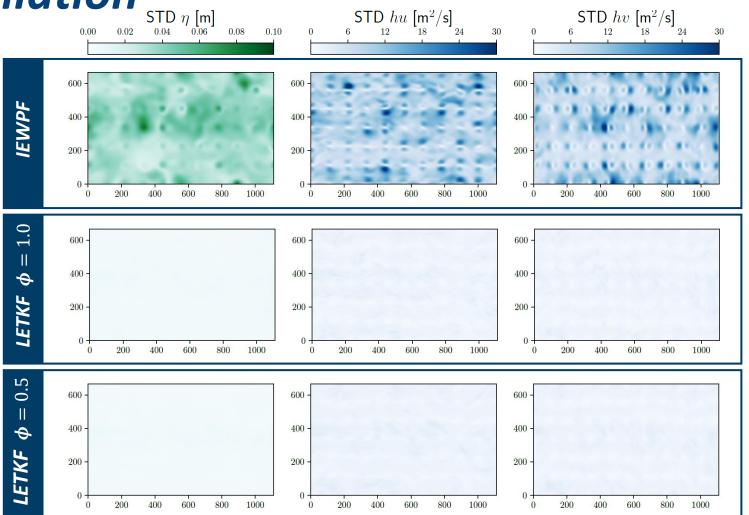


Numerical Results State Assimilation

Standard Deviation

 $\frac{1}{N_e-1}\sqrt{\sum(\overline{\boldsymbol{x}}-\boldsymbol{x}_e)^2}$

- Evaluated after day 10
- Assesses ensemble spread around its mean

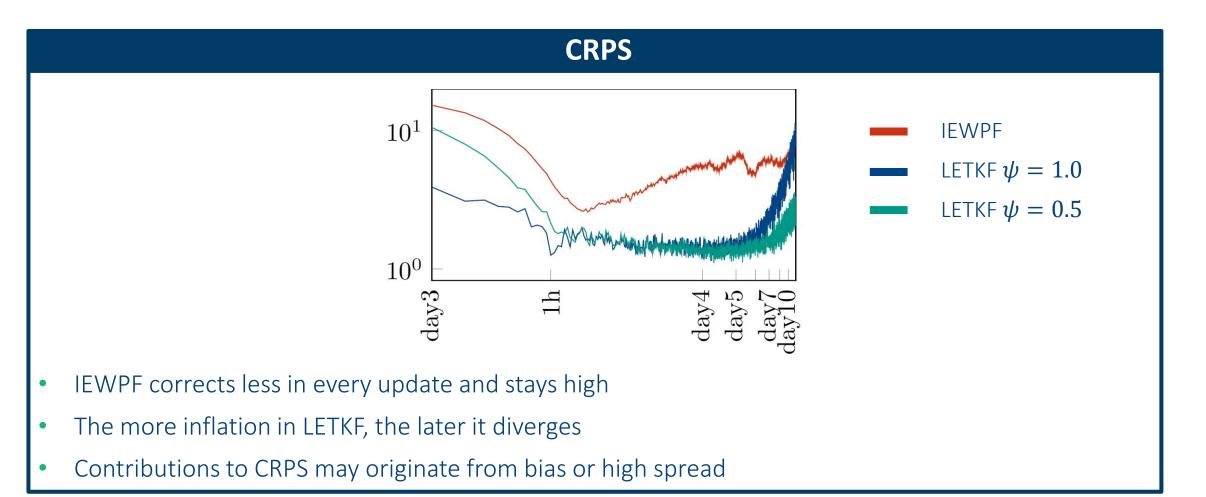


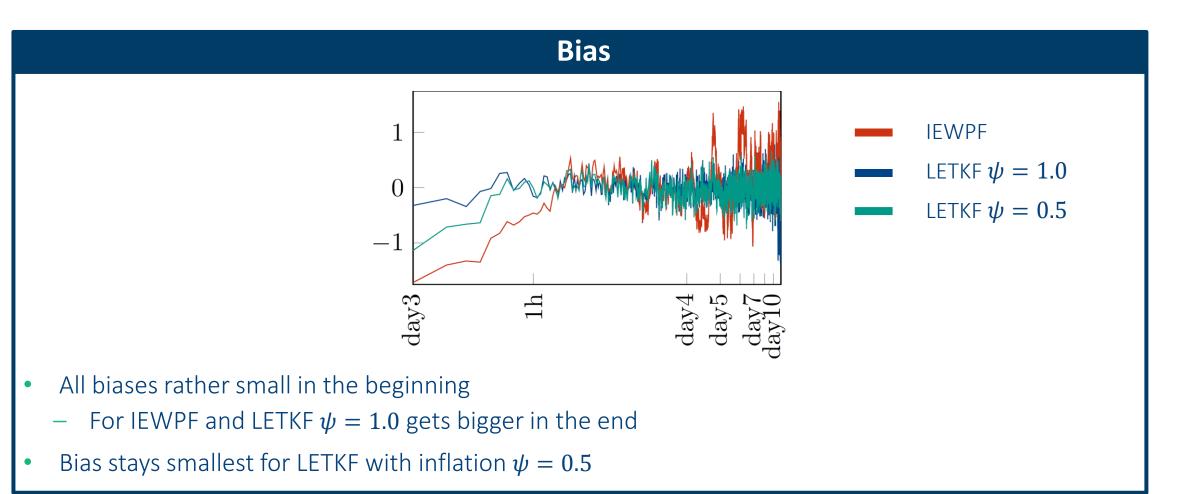
Skill Score s

- Quantitative assessment of the performance of data assimilation methods
- Evaluate how good ensemble can forecast next observations

$$s\left(\boldsymbol{x}_{e}^{n,f},\boldsymbol{y}^{n}\right)\in\mathbb{R}$$

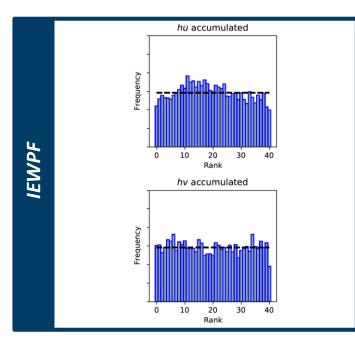
- Revealing properties of the ensemble
- 1. Continuous ranked probability score
- 2. Bias

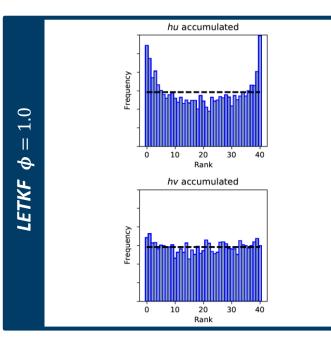


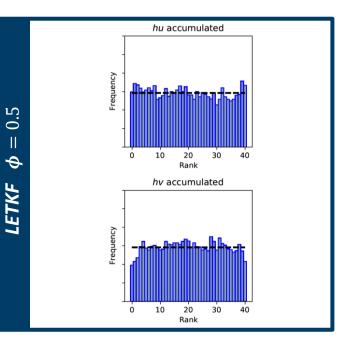


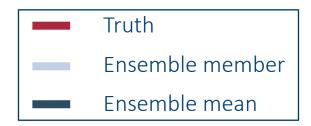
Rank Histograms

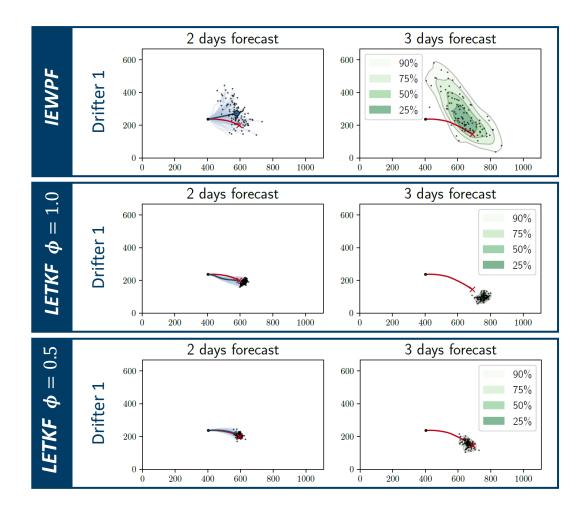
- Repeating the first hour of data assimilation in the previous experimental set-up with $N_e = 40$
- Keep record of rank of truth within ensemble at a set of spatial positions

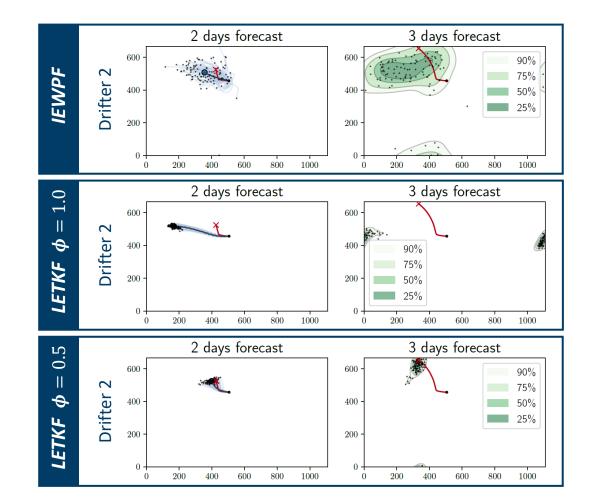












- Localisation for the LETKF is efficient method to assimilate very sparse point data
- Strengthen argument that IEWPF is applicable to high-dimensional applications, but heavily depending on structure of model error covariance matrix
- Broader range of skill scores reveals deep insight

- Evaluate drift trajectories with real-world data
- Employ localisation with other EnKF versions

Technology for a better society