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Inverse modelling

Fukushima-Daiichi accidentFukushima-Daiichi accident

Fukushima-Daiichi nuclear disaster in March 2011.

Release of large quantities of radionuclides, including 137Cs:
on three weeks,
with an important temporal variability.
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Inverse modelling

Fukushima-Daiichi 137Cs observationsFukushima-Daiichi 137Cs observations

• > 14,000 hourly air
concentration measurements
between 11/03/2011 and
23/03/2011

• > 1,000 deposition
measurements;

• Use of the Eulerian
transport model ldX
represented by a linear
observation operator H

• Meteorological data:
ECMWF OD
(0.125◦, 3h);
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Inverse modelling

Observation equationObservation equation

y = Hx︸︷︷︸ + ϵ

Observations vector

Observation operator

Source vector (describing
the source of the releases)

Radionuclide transport modelling
Modelled predictions for a given source

Observation error

All variables describing the source of the release (height, coordinates,...) are
assumed to be known, except for
▶ the source term q or vector of constant release rates of size Nimp (number of

pulses).

But how to characterise q ?
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Inverse modelling

Representation of the continuous release by a step functionRepresentation of the continuous release by a step function

The source term q needs to be well characterised

Representation of the release → solving a trade-off between
bias (too simple model, insufficient to learn correctly from data),
variance (overfitting or overinterpretation of the data).

Inverse the source −→ inverse the parametrisation of the source
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Bayesian problem definition

Bayesian inverse modellingBayesian inverse modelling

Bayes’ formula
Bayes’ formula, with x the vector of variables characterising the source and y the
observations is written

Posterior︷ ︸︸ ︷
p(x|y) =

Likelihood︷ ︸︸ ︷
p(y|x)

Prior︷︸︸︷
p(x)

p(y)︸︷︷︸
Evidence

∝ p(y|x)p(x).

y|x diagnostics the difference between the observations y and the dispersion model
results computed out of the source x.

Source vector = variables of interest to sample:
release rates q;
observation error scale matrix R;
source prior scale matrix B.
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Bayesian problem definition

A popular MCMC algorithm: Metropolis-HastingsA popular MCMC algorithm: Metropolis-Hastings

xx1 x2 lnq r

x′x′1 x′2 lnq′ r′

αy(x
′,x) = p(x′|y)

p(x|y)
u ∼ U(0, 1)

u < αy(x
′,x)

u > αy(x
′,x)

x = x′

x = x

x′1 ∼ Pg(·|x1) x′2 ∼ Pg(·|x2)
lnq′

∼ Pg(·| lnq)
r′ ∼ Pg(·|r)

Proposal : x′ generated from x with g Calculation acceptation rate Accept or reject candidate
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Reversible-Jump MCMC algorithm

Model selection: Reversible-Jump MCMCModel selection: Reversible-Jump MCMC

The constant release rates qi are separated by "edges" λi.
The evolution of the release is modelled by a specific partition of edges.

λ0 λ1 λ2 λ3 λ4 λ5 λ6

q0 q1 q2 q3 q4 q5

The transdimensional partition of edges Λ = {λ0, λ1, ...} is integrated as a variables
ensemble to the MCMC procedure:

x = (ln q, R) → x = (ln q, R, Λ)

=⇒ Use of the Reversible Jump MCMC1.

1Green 1995; Liu et al. 2017.
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Reversible-Jump MCMC algorithm

RJ-MCMC: random transdimensional jumpsRJ-MCMC: random transdimensional jumps

An example of transdimensional procedure : the "edge" birth2.

λi−1 λi λi+1 λi−1 λ′i λ′i+1 λ′i+2

qi−1 qi q′i−1 q′i q′i+1

Edge birth

x = (λ0, ..., λn, q0, ..., qk, ...)←→ (λ0, ..., λ′
i, ..., λn, q0, ..., qk − uln q , qk + uln q , ...) = x′

Dimension change of x → addition of terms ensuring the detailed balance in
the MCMC algorithm;
Need to define new priors and transition probabilities on the edge variables and
release rates.

2Bodin and Sambridge 2009.
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Integrate more information

Redefining the observation error scale matrixRedefining the observation error scale matrix

Need to integrate more information.
▶ Factor both concentration and deposition measurements into a Bayesian

sampling
▶ Take in account spatial distances between air concentration measurements

R =


rc,i 0 ... ... ... 0
0 rc,j 0 ... ... ...
... 0 rc,i ... ... ...
... ... 0 ... 0 ...
... ... ... ... rd 0
0 ... ... ... 0 rd

 . (1)

Vector to sample:

x =
(
ln q, rc,1, . . . , rc,i, ..., rd, (λ1, . . . , λNimp−1)

)
(2)
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Fukushima-Daiichi 137Cs ST reconstruction

Definition of the distributionsDefinition of the distributions

Likelihood y|x ∼ log −Cauchy with scale R3.

p(y|x) ∝
Nobs∏
i=1

1
(yi + yt)π

√
ri

(
1 + (ln(yi+yt)−ln(Hxi+yt))2

ri

) (3)

▶ efficient to manage observations of different orders of magnitude;
▶ to manage the observations close to zero → we add a threshold term4 yt;

Prior definitions
▶ Uniform priors on the scale parameters;
▶ Exponential prior on edges to penalise too complex models:

p(λ1, . . . , λk) =


e−k∑Nb,max

i=1

Nb,max!
i!(Nb,max−i)! e−i

, if k ∈ {1, 2, . . . , Nb,max};

0 otherwise,

(4)

3Dumont Le Brazidec et al. 2021.
4Liu et al. 2017.
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Fukushima-Daiichi 137Cs ST reconstruction

Prior on the release ratesPrior on the release rates

Some release pulses are not constrained by the observations.
Folded gaussian prior is set with B parametrised with parameters bc for
constrained pulses and bnc for non-constrained pulses
B is adapted for our case: pulses sampled are combinations of hourly pulses

p(ln q|Nimp) =
Nimp∏
i=1

√
2

π(wc,ibc + wnc,ibnc)

(
e

− (ln qi)2
2(wc,ibc+wnc,ibnc)

)

Nimp is the number of pulses at a certain RJ-MCMC iteration
▶ characterises the grid on which ln q is defined.
▶ Nimp = Nb − 1 (Nb is the number of edges)

this prior also constrains the model’s complexity
We sample:

x =
(
ln q, rc,1, . . . , rc,i, ..., rd, bc, (λ1, . . . , λNimp−1)

)
(5)
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Fukushima-Daiichi 137Cs ST reconstruction

Fukushima-Daiichi 137Cs release rate reconstructionFukushima-Daiichi 137Cs release rate reconstruction

Fukushima-Daiichi 137Cs release rate evolution (and corresponding variance) in Bq.s−1.
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RJ-MCMC

Source term of Saunier et al. (2013)

Source term of Terada et al. (2020)

Several release episodes (12-13 march, 14-16 march, 18 march, 19-21 march) of
diverse variabilities;
Large variability of the variability → proves RJ-MCMC pertinence.
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Fukushima-Daiichi 137Cs ST reconstruction

Fukushima-Daiichi 137Cs variability reconstructionFukushima-Daiichi 137Cs variability reconstruction

Evolution of the number of edges sampled around each hour (and corresponding variance).
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High variability between march 14 and 15, and march 19 and 21: periods of intense
release;
Low variability elsewhere (apart from artefacts in non-constraints periods).
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Fukushima-Daiichi 137Cs ST reconstruction

Fukushima-Daiichi 137Cs source term reconstructionFukushima-Daiichi 137Cs source term reconstruction

Reconstruction of the total 137Cs release with or without deposition measurements
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Fukushima-Daiichi 137Cs ST reconstruction

ConclusionsConclusions

Complex releases → high variability and high variability of the variability

Model of such a release complicated to define because:
▶ might be at some periods too simple

→ bias errors
▶ might be at some periods too complicated

→ overfitting + variance errors;

Use of RJ-MCMC allows to
▶ reconstruct the best model by solving the bias-variance trade-off,
▶ and thus, better estimate the uncertainties related to the release representation.
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