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How does the regression step in the two-step
EnKF connect to Bayesian estimation?

Tan Grooms

EnKF Workshop 2022
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Convert
each model state
to an
expected observation

y = h(x)

tk+1
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Compare with
observation and
observational error
distribution
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state variable
increments
(analysis)
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Advance ensemble ...

and repeat ...
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If
» The update in observation space is Gaussian and

» The regression is linear and estimated using ordinary least
squares (OLS)

Then this two-step is equivalent to a one-step EnKF where

N
BH = 1= > (x — 9)(H(x) - H(x))"
n=1
mBHT - L\ (H(x) — H)(H(x;) — H)T
N _ 1 1 1
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Is this just a different way of implementing an EnKF?

If we replace EAKF or linear regression, do we lose the
connection to Bayesian estimation?
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We have two random variables X and Y whose joint pdf is
denoted

[x, y]

Our goal is to sample from the conditional distribution

[x]Y = yo]
which can also be written as a Bayesian posterior
Y=y,|x
[ Y _yﬂ | ] [x]
Y =y,

(Yo is the actual value of the observation; y denotes any value
that the random variable Y could take.)

(x| Y=y, =
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Next, introduce a new random variable Z. With this new
random variable we have a new joint distribution

[x, v, z].
The old one is just the marginal

[x, y] = /[x, y, z|dz.

The posterior that we care about is just the marginal of a new
posterior:

[x\Y—yo]—/[x,z\Y—yo]dZ—/[Y:yo‘x’z][x,z]dz.

[Y = yo]
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For the general two-step framework we must make the
following assumption about Z:

[Y=yolx, 2] =[Y=y,|z].

In the standard DART two-step, we have Y = H(X) + € and
usually set Z = H(X).

We do not need an observation model of the form
Y = H(X) + €. It's just mentioned here for illustration.
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Use Bayes’ rule to expand the posterior inside the integral, and
use our one assumption about Z:

[x\YZyo]Z/[Y:yM[x,z}dz

[Y =y
ezl

Now expand the prior [x, z| as marginal times conditional

[x‘y_yo]—/cl[fyzzy;jj][z]) [x]z]dz.
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(x| Y=y,| = / <[1[/Y::]/0y‘of][z]> [x|z]dz.

Notice that the quantity in parenthesis is a posterior
distribution
[Y =yo|z]

S EIC S

SO
[ﬂYzmdz/MuMﬂYZ%Mz

How can we draw samples {x;" }}Y, from a distribution of this
form?
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Consider the following analogy. Suppose we have the
following dynamics

X1 = M (XF) + W

where W is a random variable with pdf [w]. We know how to
sample from [ X*+1].

First draw an ensemble {x*}I¥ | of samples of X*.

Then apply the dynamics M to each xf and finally add a sample
from the noise w¥.
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The pdf of X**! is the marginal distribution
(1] = /[xk+17 dk = /[xk+1 ][ ]t

The first step in sampling from this distribution is to sample

from [x*].

k]‘

Then sample from [¥+1 | X* = x}
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GENERAL TWO-STEP SUMMARY

The two-step Bayesian update has exactly the same form.
Recall that we want to sample from

[xw:yo]=/[x\z][z|¥=yo1dz.

> Step 1: Generate an ensemble {z;" }IY ;| from the posterior
[z]Y =vo].
> Step 2: Sample x;" from pdf [x|Z =z} ].
The difference between this case and the analogy is that in the

analogy we know what the dynamics are, so we know how to
sample from the conditional distribution.
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This is where regression comes in. Propose a linear model of
the form
X =0Bo+BZ+n.

(Assume for the moment that Z is scalar to make the exposition
easier.)

If n is Gaussian with zero mean and covariance 3, then we are
saying
X|Z=z~N(Bo+ Bz, )

We can estimate the regression coefficients using OLS.
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2-STEP ENKF SUMMARY

Generate a prior ensemble {x; l 1
Generate a prior ensemble {z; },.

Generate a posterior ensemble {z;" }I¥ | using an EnKF.

vvyyy

Estimate the regression coeff1c1ents as the OLS solution of
the following system

Bo+ Bz =x7, i=1,...,N

» Generate samples ; = x;” — B — B1z;
> Setx =By + Bzl + m;.

You can write this in incremental form as: Ax; = 81Az;.
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Non-Gaussian Generalizations

The nice thing about the first step is that it is typically
low-dimensional, so we can use methods to sample from
[z]Y =y, ] that work for non-Gaussian distributions but that
might be impractical in higher dimensions. E.g.

» Particle Filters
Gaussian Mixture Methods
RHEF: Anderson MWR 2010
Gamma/Inverse-Gamma/Gaussian: Bishop QJRMS 2016

>
>
>
> Etc
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Non-Gaussian Generalizations

Now that we know how the second step connects to the
Bayesian problem, we can use advanced regression models

» General Linear Model X =n + 211:1 Bioi(Z)
» Generalized Linear Model g(X) = n + 2]1.21 Bi¢i(Z). (E.g.
Anderson Rank Regression 2019)
> Nonlinear Models (e.g. neural nets) g(X; B¢) = n+£(Z; Bf)
The assumptions about 1 determine the form of the conditional
distribution [ x | z], which also indicates the form of the

objective function that must be minimized to find the unknown
parameters.
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I set up Lorenz-96 observing all variables every 0.05 model time
units, with three different observation models:

Linear: Y = X + €

1
1+ exp{0.5 x (X —2.5) + €}
Log-Normal: Y = exp {0.5 x |X —2.5| + €}

Logit-Normal: Y =

where € are standard normal.
I won’t show results for the linear obs case.

I used multiplicative prior inflation and localization, both
tuned to produce optimal results.
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For the log-normal observations the likelihood is bimodal. In
the standard approach (Z = H(X)) the second step requires
fitting a regression to this kind of data
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By choosing Z = X, I don’t have to do regression through this
kind of scatterplot. All the nonlinearity /bimodality is handled
in the first step.
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LOGIT-NORMAL RESULTS
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LOG-NORMAL RESULTS
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More details about iRHF along with a comparative discussion
of Gaussian Anamorphosis methods can be found in

Grooms, “A comparison of nonlinear extensions to the
ensemble Kalman filter” Computational Geosciences, 2022.
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