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If
I The update in observation space is Gaussian and
I The regression is linear and estimated using ordinary least

squares (OLS)
Then this two-step is equivalent to a one-step EnKF where

BHT =
1

N − 1

N∑
n=1

(xi − x̄)(H(xi)−H(x))T

HBHT =
1

N − 1

N∑
n=1

(H(xi)−H(x))(H(xi)−H(x))T
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Is this just a different way of implementing an EnKF?

If we replace EAKF or linear regression, do we lose the
connection to Bayesian estimation?
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We have two random variables X and Y whose joint pdf is
denoted

[ x, y ]

Our goal is to sample from the conditional distribution

[ x |Y = yo ]

which can also be written as a Bayesian posterior

[ x |Y = yo ] =
[ Y = yo | x ]

[Y = yo]
[ x ]

(yo is the actual value of the observation; y denotes any value
that the random variable Y could take.)
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Next, introduce a new random variable Z. With this new
random variable we have a new joint distribution

[ x, y, z ].

The old one is just the marginal

[ x, y ] =

∫
[ x, y, z ]dz.

The posterior that we care about is just the marginal of a new
posterior:

[ x |Y = yo ] =

∫
[ x, z |Y = yo ]dz =

∫
[ Y = yo | x, z ]

[Y = yo]
[ x, z ]dz.
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For the general two-step framework we must make the
following assumption about Z:

[ Y = yo | x, z ] = [ Y = yo | z].

In the standard DART two-step, we have Y = H(X) + ε and
usually set Z = H(X).

We do not need an observation model of the form
Y = H(X) + ε. It’s just mentioned here for illustration.
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Use Bayes’ rule to expand the posterior inside the integral, and
use our one assumption about Z:

[ x |Y = yo ] =

∫
[ Y = yo | x, z ]

[Y = yo]
[ x, z ]dz

=

∫
[ Y = yo | z ]

[Y = yo]
[ x, z ]dz.

Now expand the prior [ x, z ] as marginal times conditional

[ x |Y = yo ] =

∫ (
[ Y = yo | z ]

[Y = yo]
[ z ]

)
[ x | z ]dz.
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[ x |Y = yo ] =

∫ (
[ Y = yo | z ]

[Y = yo]
[ z ]

)
[ x | z ]dz.

Notice that the quantity in parenthesis is a posterior
distribution

[ Y = yo | z ]

[Y = yo]
[ z ] = [ z |Y = yo ]

so

[ x |Y = yo ] =

∫
[ x | z ][ z |Y = yo ]dz.

How can we draw samples {x+i }
N
i=1 from a distribution of this

form?
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Consider the following analogy. Suppose we have the
following dynamics

Xk+1 = M
(

Xk
)

+ Wk

where Wk is a random variable with pdf [ w ]. We know how to
sample from [ Xk+1 ].

First draw an ensemble {xk
i }

N
i=1 of samples of Xk.

Then apply the dynamics M to each xk
i and finally add a sample

from the noise wk
i .
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The pdf of Xk+1 is the marginal distribution

[ xk+1 ] =

∫
[ xk+1, xk ]dxk =

∫
[ xk+1 | xk ][ xk ]dxk

The first step in sampling from this distribution is to sample
from [ xk ].

Then sample from [ xk+1 |Xk = xk
i ].
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GENERAL TWO-STEP SUMMARY

The two-step Bayesian update has exactly the same form.
Recall that we want to sample from

[ x |Y = yo ] =

∫
[ x | z ][ z |Y = yo ]dz.

I Step 1: Generate an ensemble {z+i }
N
i=1 from the posterior

[ z |Y = yo ].
I Step 2: Sample x+i from pdf [ x |Z = z+i ].

The difference between this case and the analogy is that in the
analogy we know what the dynamics are, so we know how to
sample from the conditional distribution.
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This is where regression comes in. Propose a linear model of
the form

X = β0 + β1Z + η.

(Assume for the moment that Z is scalar to make the exposition
easier.)

If η is Gaussian with zero mean and covariance Σ, then we are
saying

X|Z = z ∼ N (β0 + β1z,Σ)

We can estimate the regression coefficients using OLS.
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2-STEP ENKF SUMMARY

I Generate a prior ensemble {x−i }
N
i=1.

I Generate a prior ensemble {z−i }
N
i=1.

I Generate a posterior ensemble {z+i }
N
i=1 using an EnKF.

I Estimate the regression coefficients as the OLS solution of
the following system

β0 + β1z−i = x−i , i = 1, . . . ,N

I Generate samples ηi = x−i − β0 − β1z−i
I Set x+i = β0 + β1z+i + ηi.

You can write this in incremental form as: ∆xi = β1∆zi.
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Non-Gaussian Generalizations

The nice thing about the first step is that it is typically
low-dimensional, so we can use methods to sample from
[ z |Y = yo ] that work for non-Gaussian distributions but that
might be impractical in higher dimensions. E.g.

I Particle Filters
I Gaussian Mixture Methods
I RHF: Anderson MWR 2010
I Gamma/Inverse-Gamma/Gaussian: Bishop QJRMS 2016
I Etc
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Non-Gaussian Generalizations

Now that we know how the second step connects to the
Bayesian problem, we can use advanced regression models

I General Linear Model X = η +
∑J

j=1 βjφj(Z)

I Generalized Linear Model g(X) = η +
∑J

j=1 βjφj(Z). (E.g.
Anderson Rank Regression 2019)

I Nonlinear Models (e.g. neural nets) g(X; βg) = η+ f(Z;βf )

The assumptions about η determine the form of the conditional
distribution [ x | z ], which also indicates the form of the
objective function that must be minimized to find the unknown
parameters.
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I set up Lorenz-96 observing all variables every 0.05 model time
units, with three different observation models:

Linear: Y = X + ε

Logit-Normal: Y =
1

1 + exp{0.5× (X − 2.5) + ε}
Log-Normal: Y = exp {0.5× |X − 2.5|+ ε}

where ε are standard normal.

I won’t show results for the linear obs case.

I used multiplicative prior inflation and localization, both
tuned to produce optimal results.
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For the log-normal observations the likelihood is bimodal. In
the standard approach (Z = H(X)) the second step requires
fitting a regression to this kind of data

By choosing Z = X, I don’t have to do regression through this
kind of scatterplot. All the nonlinearity/bimodality is handled
in the first step.
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LOGIT-NORMAL RESULTS
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LOG-NORMAL RESULTS



DART/EAKF TWO-STEP BAYES EXAMPLES

More details about iRHF along with a comparative discussion
of Gaussian Anamorphosis methods can be found in

Grooms, “A comparison of nonlinear extensions to the
ensemble Kalman filter” Computational Geosciences, 2022.
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