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Introduction - motivation

I Environmental monitoring for emissions and air quality
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I Main object of interest
I v(x , t): is a scalar field of pollutant concentration on a bounded

domain

I Data: measurements of dozens pollutants and weather related quantities
at various times and locations

I Funding & collaborators: Alastair Forbes - NPL



Introduction - problem structure

I Data assimilation: Estimate v(x , t) given data Yt obtained at
different locations

I Inference procedure
I α) Choose model for v(x , t)
I β) Fit models to data to get model parameters θ
I γ) Improve our sensing capabilities,

I move sensors to better locations, possibly on-line

I This talk:
I α) continuous time Linear Gaussian model - Kalman filter
I β) and γ) performed jointly using on-line gradient methods



Outline

I Model

dVt = BVtdt + Q
1
2 dWt

dYt = FVtdt + τdZt

typically Vt ∈ some Hilbert space U, is unknown and
observations Yt ∈ Rdy

I example for Vt : the advection diffusion equation

I Filtering and parameter estimation
I Optimal sensor placement
I Joint parameter estimation and sensor placement
I Numerical results and discussion



Modelling for space time processes

I Various approaches for space time processes
I Large scale regression of Gaussian Processes:

I Banerjee, Gelfand, Finley, Sang 08, Rue, Martino, Chopin 09,
Lindgren, Rue, Lindström 11

I Linear state space models, GPs & Kalman filters
I Wikle, Cressie 99, Sahu et. al. 05, 07,....,Duan, Gelfand,

Sirmans 09, Sarkka et. al. 12, 13, ...
I ... and many more

I Linear SPDE approach
I [Sigrist, Künsch & Stahel, JRSSB 16]
I tractable space time covariance properties (“non separable”)
I efficient inference:

I Kalman filtering, and MCMC for estimating θ



Model

I Stochastic Advection-Diffusion

∂tv + ζv −∇ · Σ∇v + µT∇v = ε

I 2D bounded domain, periodic boundaries
I ε noise
I Parameters: θ = (ζ, µ,Σ, ...)

I Whittle 54, 63,...,Sigrist, Künsch & Stahel 16



Some particulars

I Σ is composed of a rotation & translations

Σ =
1
ρ2
1

[
cosψ sinψ
−γ sinψ γ cosψ

]T [
cosψ sinψ
−γ sinψ γ cosψ

]
I SPDE with “Matern” type noise for ε

dε(t) =σ

(
4− 1

ρ2
0
I

)−1

︸ ︷︷ ︸
:=Q1/2

dW (t)

with W being space time Brownian motion.



Basis and projections

I Vt ∈ Hilbert space, U, with standard Fourier basis
I zero mean functions:

∫
vdx = 0.

I and span of ψk(x) = 1
2π exp (ik · x) where k ∈ Z2 \ {0}

I Decomposition of v :

v(x , t) =
∑

k∈Z2/{0}

vk(t)ψk(x)

with vk = 〈v , ψk〉 =
∫
T uψk(x)dx .

I Noise process:

Wt =
∑

k∈Z2/{0}

σkWk(t)ψk(x),

with Wk(t) are i.i.d. Brownian motions,
∑

k∈Z2/{0} σk
2 <∞.



SDE form of dynamics

I SPDE (on U) is Ornstein Uhlenbeck (OU)

dVt = BVtdt + Q
1
2 dWt

I Each vk(t) is a scalar OU process.

dvk(t) = −bk(ψ, γ, ρ1, µ)vkdt + σk(ρ0, σ)dWk(t)

with coefficients depending on parameters

bk = ζ +
1
ρ1

Σ11(γ, ψ)k2
1 +

1
ρ1

2Σ12(γ, ψ)k1k2

+
1
ρ1

Σ22(γ, ψ)k2
2 + µ1k1 + µ2k2

σk =
σ

2π
(|k|2 +

1
ρ

)−1



Observations

I Vt is latent/unknown
I Can model observation as a linear projection F : U → Rdy .
I At a fixed location ol :

FV (ol , t) =
1

|Bol (r)|

∫
Bol

(r)
V (t, x)dx

I Add noise either in:
I discrete time:

Yn = FVtn + Zn, Zn ∼ N (0, τ2I ),

or continuous time:

dYs = FVsds + τdZs



Filtering

I Conditional distr. or Filter

πt (·) = P(Vt ∈ ·| Yt , θ, o) here = N (mt ,Pt)

where Yt = σ(Ys ; s ≤ t).
I Bayes rule (or Kallianpur-Striebel)

πt(ϕ) =
ρt(ϕ)

ρt(1)

Discr. time ρn(ϕ) = EX

[
ϕ(Xn) exp

(
− 1

2τ2

∑n
l=1 (Yl −F (Vtl ))2

)]
Cont. time ρt(ϕ) =

EX

[
ϕ(Xt) exp

(
1
τ2

∫ t

0 F (Vs)TdYs − 1
2τ2

∫ t

0 |F (Vs)|2 ds
)]



Kalman filter

I In discrete time there are standard recursions for
mn,Pn, ρn(1) = N (cn,Υn)

µn = Atnmn−1

Σn = AtnPn−1A
∗
tn +

∫ tn

tn−1

AtQA
∗
tdt

cn = Fµn

Υn = FΣnF
∗ + τ2I

Kn = ΣnF
∗Υ−1

n

mn = µn + Kn(Yn − cn)

Pn = (I − KnF )Σn

A(t) = exp (B(t − tn−1)) , t > tn



Kalman filter

I In continuous time:

dmt = −Bmtdt +
1
τ2PtF

∗ (dYt −Fmt)

P comes from Riccatti equation

Ṗt = BPt + PtB∗ + Q − 1
τ2PtF

∗FP∗t

I Marginal likelihood:

ρt(1) = exp

(
1
τ2

∫ t

0
F (ms)TdYs −

1
2τ2

∫ t

0
|F (ms)|2 ds

)



On the Riccatti equation and stability

Problem well studied in inf. dim./Hilbert space setting: Athans,
Falb 60-s, Curtain, Bensoussan 70-s, Khapalov 80-s, ...
I Pt is unique continuous mild solution

(Curtain 75, 78...) IF
I
(
B,Q1/2) exp. stabilisable
I there is a K s.t. B − Q1/2K generates stable semigroup

I (B,F ) exp. detectable
I as above for B − KF

I Then KF stable and
Pt → P∞



Recursive Maximum likelihood - discrete time

I Suppose sensor positions o are fixed.
I Recall θ = (ζ, µ, ψ, γ, ρ0, ρ1, τ, σ, ...)

I Discrete time on-line gradient update

θn = θn−1 + γn∇ log pθ0:n−1(Yn|Y1:n−1)

where

∇ log pθ0:n−1(Yn|Y1:n−1) = −1
2
∇θn−1 log det(Υn)

− 1
2
∇θn−1

(
(Yn − cn)∗Υ−1

n (Yn − cn)
)

I Need the tangent filter



Recursive Maximum likelihood - discrete time

I In parallel to Kalman filter compute:

∇θn−1µn = Atn∇θn−1mn−1 +
(
∇θn−1Atn

)
mn−1

∇θn−1Σn = ....

∇θn−1cn = F∇θn−1µn

∇θn−1Υn = F∇θn−1ΣnF
∗

I Tangent update

∇θn−1Kn = ∇θn−1

(
ΣnF

∗Υ−1
n

)
∇θn−1mn = ∇θn−1µn +∇θn−1Kn(Yn − cn) + Kn(Yn −∇θn−1cn)

∇θn−1Pn = (I −∇θn−1KnF )Σn + (I − KnF )∇θn−1Σn



Recursive Maximum likelihood - discrete time

I Recall ρn(1) = p(Y1:n|θ, o)

I Approch based on ergodicity of 1
n∇θ log ρn(1),

1
n

∑
n≥1

∇θ log p(Yn|Y1:n−1)→
∫
∇θ log p(Yn|Y1:n−1)νθ,o(dm, dP, dY )

I Stochastic gradient descent
I ..., Legland & Mevel 99, Doucet & Tadic 04, ..., 18



Recursive Maximum likelihood - cont. time

I Want to write something like:

”θ̇t = γ(t)∇θt
(
1
t

log ρt(1)

)
”

to get an explicit recursion

dθt =
γ(t)

τ2 (F m̊t)
∗ (dYt −F (mt)dt)

with m̊t = ”∇θtmt” obeying a SDE derived from mt ,Pt

I some analysis:
I recent: Surace & Pfister 18, using Sirignano & Spiliopoulos 17
I older: Sen & Athreya 77, Ljung 78,..., Levanony, Shwartz, Zeitouini

93,...



Optimal Sensor placement

I Suppose θ is known and fixed.
I Uncertainty in πt depends on sensor locations via F

I Optimise locations to minimise uncertainty in Pt or P∞?

I Many approaches:
I Burns & Rautenberg 15, Hintermuller et. al. 17, Herzog, Riedel,

Ucinski, 17, Zhuk et. al. 16 , Walter 19, Zhang & Morris 18,
Demetriou et. al, 04,...

I Ideas very similar to experiment design
I Chaloner & Verdinelli 95



Optimal Sensor placement

I Find sensor locations o = (o1, . . . , om) that minimise:

lim
t

1
t

∫ t

0
TrJPt or TrJP∞

with J is an optional operator to emphasise on particular areas

I Control or Optimisation problem of the Riccati equation

I Average cost case: Burns & Rautenberg 15,
I fixed or moving sensors
I Problem has a solution, Pt Frechet differentiable, Galerkin

convergence
I Using P∞: Morris 11, Zhang & Morris 18

I higher 1
τ2 F ∗F means lower TrP∞



Optimal Sensor placement

I Problem well posed for our model setting

I Can write an online gradient as an ODE

dot = −βt∇ot (TrJPt) dt

I We are controlling the Riccati equation to optimise steady
state

I Existence of P∞ allows to extend arguments in RML
I for fixed θ there is an optimal solution o∗(θ)



Joint parameter estimation and optimal sensor placement

I We want to combine both gradients

dθt =
γt
τ2 (F m̊t)

∗ (dYt −F ot (mt)dt)

dot = −βt∇ot (TrJPt) dt

while propagating KF and its θ and o gradients

I Note
I observation model non-homogeneous
I γt and βt need to have different time scales

I Works very well in practice!



Convergence results

I Ultimate aim is to solve

θ̂ = arg max
θ
L̃
(
θ, arg min

o
J̃ (θ, o)

)
, ô = arg min

o
J̃
(
θ̂, o
)
.

I We can establish weaker

lim
t→∞

∇θL̃(θ(t), o(t)) = lim
t→∞

∇oJ̃ (θ(t), o(t)) = 0.

I Convergence results
I are formulated for general state space models
I verified also for the models described here



Convergence results - approach

I Extend Borkar’s two time scale stochastic approximation
I ODE method and Benaim’s asymptotic pseudo trajectory

method

I Convergence of θt : ∇θt log L̃(m,P; θt , o
∗(θt))→ 0

I Convergence of ot to o∗(θ)

I Specific requirements:
I ergodicity for mt ,Pt and gradient dynamics for all θ, o,
I moment conditions on invariant measure ν and ∇ν,
I regularity of solutions of Poisson equation and gradients



Convergence of parameters and sensor locations
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ôx

0e+00 6e+04

0
2

4
6

8
10

12

Sensor 5

ô
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Adapting to changes of parameters (fixed step size)
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Mean square error
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Estimation of v(x , t)

y

0 0.5 1

0
0.

5
1

y

0 0.5 1

0
0.

5
1

y

0 0.5 1

0
0.

5
1

y

0 0.5 1

0
0.

5
1



Discussion

I Method is provably convergent to stationary points of a bilevel
optimisation problem

I For simple linear Gaussian models allows scalable practical
inference, sensor control

I Possible extensions; non-linear/non Gaussian models:
I EnKFs:

I D. Crisan, P. Del Moral, A. Jasra, H. Ruzayqat,
Log-Normalization Constant Estimation using the Ensemble
Kalman-Bucy Filter with Application to High-Dimensional
Models, 2021

I Particle Filters: low dimensional problems
I A. Beskos, D. Crisan, A. Jasra, N. K., H. Ruzayqat,

Score-Based Parameter Estimation for a Class of
Continuous-Time State Space Models, SIAM SISC 2021.



Preprints

I Case studies in this talk:
I L. Sharrock, N. K. Joint Online Parameter Estimation and Optimal

Sensor Placement for the Partially Observed Stochastic
Advection-Diffusion Equation, 2020.

I General theoretical results:
I L. Sharrock, N. K. Two-Timescale Stochastic Gradient Descent in

Continuous Time with Applications to Joint Online Parameter
Estimation and Optimal Sensor Placement, 2020.




