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Overview

• Goal: estimation of mantle viscosities

• Assimilation of relative paleo sea level observations in the GIA model VILMA

• Sandbox experiment with observations taken from reference run (identical twin setup)

• Assimilation of sea level rates of change

• Two viscosity distribution parameterizations:

1. 3-layer model with two viscous mantle layers and (fixed) elastic lithosphere

2. 1D profile with 152 viscous mantle layers and (fixed) elastic lithosphere
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Glacial Isostatic Adjustment

• Earth’s visco-elastic response to changing mass load at the surface

• Involves lateral flow of mantle material

• Subsidence / uplift rates depend on mantle’s ability to flow (viscosity)

EnKF Workshop – June 9th 2021 – 3 –



VILMA

• Forward model for Earth’s visco-elastic deformation due to glaciation / deglaciation (Klemann et

al., 2008)

• Computes visco-elastic response of spherical Earth to surface mass load change

• Uses spectral finite-element approach (Martinec, 2000)

• Models deformation & solves sea-level equation to obtain relative sea levels
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Data assimilation

• Use particle filter with stochastic resampling and perturbation

• During assimilation step particle performance is estimated based on observations

• Resampling of low-weight particles to model states of higher-weight particles

• Perturbation of particle viscosity values to

- Avoid filter degeneracy

- Explore new model state space
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The particle filter

Bayes’ Theorem for pdfs

pm(ψ|d) =
pd(d|ψ)pm(ψ)

pd(d)
(Leeuwen, 2009)

where

pm(ψ|d) posterior pdf for model given the data

pd(d|ψ) likelihood of data given the model

pm(ψ) prior pdf of the model

pd(d) model evidence
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Filter update

Posterior density:

p(ψ|d) =

N∑
i=1

wiδ(ψ − ψi)

with weights

wi =
p(d|ψi)∑N
j=1 p(d|ψj)

and likelihood

p(d|ψi) = exp

(
1

2σ2
d

(d−Hψi)
T(d−Hψi)

)
with ψi: model vector, H: observation operator, d: observation vector

3-layer case: perturbation based on ensemble variance: ∆ψi ∼ N(0, σ2
ens)
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The particle filter

• Particle filter with resampling and perturbation

• Make use of Parallel Data Assimilation Framework PDAF (Nerger et al., 2005)
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Identical twins

• Reference run m0 with target viscosity values

• Ensemble initialization from reference model at 26.5 / 10.5 kyrs BP

• Observations at regular time intervals (1 kyr)

• Synthetic observations at locations where real observations exist
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Observations

Locations of real observations, projected onto VILMA grid points:

Region Num. of observations

Global 1807

NA & Greenland 1309

Fennoscandia 209
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Results Part I: The 3-layer model

Investigate dependence on:

• Observation uncertainty

• Observation distribution

• Observation period
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Observation uncertainty

RMSE development for RSL (grey) Viscosity development (grey)

Ice volume (black) Ensemble mean (red)

Target values (black)
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Obs. uncert.

0.1 m

0.25 m

0.5 m



Observation distribution

Obs. uncertainty: 0.25 m (same as case B)
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RMSE development for RSL (grey)

Ice volume (black)

Viscosity development (grey)

Ensemble mean (red)

Target values (black)



10 kyrs of observations

Global data set, observations from 10 ka BP till present day
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RMSE development for RSL (grey)

Ice volume (black)

Viscosity development (grey)

Ensemble mean (red)

Target values (black)
Obs. uncertainty B10: 0.25 m

C10: 0.5 m



Results Part II: The 1D-profile model

Perturbation strategies:

1. Scaling entire profile with common factor

2. Adjusting individual layers

3. Combination of 1 & 2
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3-layer model vs. 1D profile

Comparison 3-layer model (red) vs. 1D profile (green)
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1D profile:

• 12 fixed lithospheric layers

• 152 viscous mantle layers

• Viscosity in mantle layers parameterized with cubic

hermite splines to ensure smoothness (20 knots)

• Perturbation of viscosity values of spline knots

(black crosses) during assimilation

• Values for layers obtained by spline interpolation



1D profile: scaling
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Black: target profile, grey: ensemble models, red: ensemble mean



1D profile: spline parameterization
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Black: target profile, grey: ensemble models, red: ensemble mean



1D profile: scaling + profile shape adjustment
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Black: target profile, grey: ensemble models, red: ensemble mean



Known discontinuities
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Summary

• Sucessfully applied particle filter for mantle viscosity estimation in a sandbox setup

• Very good convergence to target values in the 3-layer parameterization

• For depth profile good convergence for shallow layers, deep layer viscosities are more difficult to

constrain → slower convergence
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Next steps

• Improve profile smoothness, i.e. adapt perturbation scheme

• Steps towards a more realistic temporal observation distribution

• Account for temporal observation uncertainties

• Couple to ice model for joint assimilation
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