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Bi-fidelity Ensemble Kalman Inversion
Example: Inlet inversion in aneurysm bifurcation
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Flow field Wall shear stress
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3D Inlet velocity field

If known
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3D Inlet velocity field

Not known

Demo case: aneurysm flow

However mostly we do not know this inlet BC, instead only know sparse
internal flow data.
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Sparse, noisy flow 
measurements (Data)
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Bi-fidelity Ensemble Kalman Inversion
Example: Inlet inversion in aneurysm bifurcation

̂x = F(θ, x0) = x̃ + σm y = H(x̃) + σd

θ yF(θ)

P( ̂x, θ |y) ∼ P(θ)P(y |θ)
Bayes rule

CFD model

Assimilate sparse data into model



Approximate Bayesian: ensemble Kalman update

̂xt = F(xt−1) + σm

Gaussian 
Prior

yt = Hx̃t + σd

Gaussian 
Likelihood

Linear forward

Assumptions

Prior ensemble

Posterior ensemble
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Kalman update formula for state estimation

2 The Need of Iterations for Nonlinear Inverse Problems

Iterative Ensemble Kalman filter has been widely used to solve inverse problems in the
following form:

x = F (✓) , (1)

y = Hx , (2)

where F (·) is the forward model, x is the system state, y is the observation, H is the
observation operator (without loss of generality, we assume H is a linear operator), and ✓

is the unknown model parameters that need to be estimated.
To obtain ✓ estimation, we follow a two-stage process. First, a new augmented state

including both the unknown parameter and full state [✓, x]T is constructed and the current
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where C
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For each step t, the observation y
(j)
t

is drawn from a normal distribution N (ȳ,�) (See [7]
for details). This step is denoted as the “update” step. Second, the prior ensembles of the

next step
n
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t+1

o
J
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and

n
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are predicted by evaluating the forward model at the
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This step is denoted as the “prediction” step. Overall, the estimations of the unknown
parameters and states for each step are computed as the posterior ensemble means at each
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Iterative Ensemble Kalman Inversion
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Forward physical model (e.g., CFD)
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Forward physical model (e.g., CFD)

Foward propagation

Forward Prediction Step

[ ̂xt, ̂θ]T → [xt, θ]T
updated

Proposed by M. Iglesias, A. Stuart, 2013, 2017, 2018

between the two regions when the update step makes the solution approach to ȳ�Hx = 0,
which minimizes kȳ �Hxk

2, and the prediction step makes the solution approach to the
region that satisfy x = F (✓). The goal of IEnKF is to converge to the intersection of
Region I and Region II that both satisfie x = F (✓) and minimizes the innovation y �Hx,
which is roughtly equivalent to the following constrained optimization problem:

min
✓,x

kȳ �Hxk
2
, s.t. x = F (✓) (11)

However, it is worth noting in Figure 2 that the solution oscillates and fails to converge to
the intersection region using standard IEnKF. The reason for that will be explained in the
next section.
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Figure 1: The solution path of the ensemble mean of ✓ at each step plotted along
with the level sets of kȳ �HF (✓)k2. The red “+” represent the ✓ values that minimize
kȳ �HF (✓)k2. The green circle denotes the starting point.

3 The Early Stopping of IEnKF

In this section, we will define the “early stopping” of standard iterative ensemble Kalman
filter when applied to nonlinear inverse problems. The reasons for early stopping are given
in the following manner: We first study the covariance shrinking e↵ect when only the
Kalman update step (3) is considered. Then we combine the Kalman update step (3)
with the prediction step (5) and investigate the influence of the interaction between the
covariance shrinkage and the forward model nonlinearity on the convergence of IEnKF.
Numerical simulations will provided for verification.

3.1 Covariance Shrinkage of Iterative Kalman Updates

As mentioned in the previous section, iterations are necessary to obtain the estimation for
the unknown parameters ✓ that both minimizes the output reconstruction error and satisfy

5

This is also can be roughly formulated as a constrained optimization problem
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Computational efficiency of Iterative EKI 
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Many evaluations of forward model, so if forward evaluation is expensive  
# of iteration * # of samples —> Computationally prohibitive!
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Bi-fidelity iterative Ensemble Kalman Inversion
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Proposed bi-fidelity iterative ensemble Kalman inversion approach
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Bi-fidelity iterative Ensemble Kalman Inversion
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Build Bi-fidelity surrogate model

Use Bi-fidelity (BF) 1 surrogate model to handle many-query request.
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Leverage the accuracy of HF model and the e�ciency of LF model.

1
Gao, Zhu, and Wang, “A Bi-fidelity Surrogate Modeling Approach for Uncertainty

Propagation in Three-Dimensional Hemodynamic Simulations”
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H. Gao, X. Zhu, J.X. Wang “A Bi-fidelity Surrogate Modeling Approach for Uncertainty Propagation in Three-Dimensional 
Hemodynamic Simulations”, 2019

Empirical error estimation for BF solver

achieved by the following equation:

cL = G�1(V L(�m))TvL(z). (9)

Since we assume the HF and LF reconstructions share the same reconstruction coe�cients,

thus the HF solution at z can be approximated as follows:

vH(z) ⇡ vB(z) =
mX

k=1

ckv
H(zk), (10)

where vB(z) is the bi-fidelity surrogate solution.

2.2.4. An empirical error bound estimation

For practical applications of the bi-fidelity (BF) approach, it is useful to answer the

following two questions: (1) whether the quality of a given LF model is good enough to

build a reasonably accurate BF approximation? (2) If the LF model is good enough, how

many HF samples are su�cient to obtain satisfactory results? In other words, a priori

assessment of the model quality and prediction error is of practical importance. Practical

estimation of the error bound of the BF approach was proposed in [82], where a number of

additional HF samples are required. In this subsection, we adopt an empirical alternative

with ease of implementation, which is motivated from the following observation:

Theorem 1. Given the first k + 1 pre-selected important points �k+1
, the relative error

between the bi-fidelity solution and the high-fidelity solution can be bounded for any point

z⇤ 2 � as follows:

||vH(z⇤)� vB(z⇤)||

||vH(z⇤)||


dH(vH(z⇤),UH(�k)))

||vH(z⇤)||| {z }
relative distance

+
||PUH(�k)v

H(z⇤)� vB(z⇤)||

||vH(z⇤)||| {z }
in-plane error

=
dH(vH(z⇤),UH(�k))

||vH(z⇤)||
(1 +

||PUH (�k)v
H(z⇤)�vB(z⇤)||

||vH(z⇤)||
dH(vH(z⇤),UH(�k)))

||vH(z⇤)||

),

(11)

where PUH(�k) is the projection operator onto the subspace UH(�k) and dH is distance func-

tion, which is defined as dH = vH
� PUHvH . The proof is rather trivial and omitted here.
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Test Case: Inlet inversion in aneurysm bifurcation
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Inlet ground truth (Not known)

Generate synthetic data

Sample out 0.4% flow data, 
corrupted with 40% noise

Prior distribution of inlet

Initial guess (prior sampling), mean is uniform stream-wise

flow without secondary flow

some initial samples
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inverse problem
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Some prior samples
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Bi-fidelity iterative Ensemble Kalman Inversion
Convergence (error vs iteration)

100 samples for each iteration, 10 total iterations will cost 0.15 hour. If
perform HF simulations, it will take 30 hours, 200 times speed up.
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Convergence history
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Ground truth
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Figure 5: Caption

6

BF-EKI-InferredLF-EKI-Inferred

100 Samples for each iteration for 10 iterations

Bi-fidelity-EKI:  0.15 hours (9 mins)!

Hi-fidelity-EKI:  30 hours 

More than 200 
times speedup!
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Bi-fidelity iterative Ensemble Kalman Inversion

How do we quantify the uncertainty?

Ground truth

3.3. Patient-specific Cerebral Aneurysm Flow52

0 1 2 3

·10�3

0

1

2

·10�3

(a) Prior

0 1 2 3

·10�3

0

1

2

·10�3

(b) LF posterior

0 1 2 3

·10�3

0

1

2

·10�3

(c) BF posterior

0 1 2 3

·10�3

0

1

2

·10�3

(d) Ground Truth

Figure 4: Caption

(a) Prior (b) LF posterior (c) BF posterior (d) Ground Truth

Figure 5: Caption

6

BF-EKI-InferredLF-EKI-Inferred
15

We need to use fully Bayesian method to quantify the 
uncertainty! 



MCMC algorithm to quantify the uncertainty

16

Fully Bayesian or MCMC methods are computationally 
expensive; however, in order to validate our method, we did a 
proof-of-concept case to illustrate how it works:

1. Simplify the case to an 2D steady simulation of aorta dissection and 
infer inlet velocity magnitude from observation data from 4D flow 
MRA

2. From EKI, we obtained an accurate mean U=0.6. Then we assign a 
prior within interval (0,1) and perform MCMC. 

3. With the information from 4D flow MRA on the probing points 
distributed downstream of the aorta, the final posterior is inferred. 
Thus, inlet profile is predicted.

P(θ) = Beta(1.1,1.1)



MCMC algorithm to quantify the uncertainty

17

Probes on a 2D aorta flow filed              Prior vs. Posterior

The MCMC method successfully give the uncertainty of the velocity. 

2D steady simulation cost 1.5 
seconds per case

Test Case: Inlet inversion in aorta dissection

Prior

Posterior

Inlet



Conclusion
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1. We proposed a Bi-fidelity EKI method and applied it on aneurysm 
bifurcation inversion problem. The method leverages the accuracy 
of hi-fidelity model and efficiency of low-fidelity model and yields 
accurate mean inlet velocity profile with economical computational 
cost. 

2. Besides predicting mean accurately, we have to quantify 
uncertainty. We adopted MCMC to quantify the velocity 
magnitude. A aorta dissection case is used for validation and the 
proposed method gives accurate uncertainty.

3. Future work will apply EKI and fully Bayesian method on 3D 
simulations to predict mean and uncertainty accurately. 
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