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Motivation and method

EnKF - Low Resolution (EnKF-LR)

xa
L,1..n(tk−1)

ML

(run N times)

xf
L,1..n(tk)

DA

y(tk)
xa

L,1..n(tk)xa
L,1..n(tk)xa
L,1..n(tk)xa
L,1..n(tk)

EnKF - High Resolution (EnKF-HR)
xa

H,1..n(tk−1)

MH

(run N times)

xf
H,1..n(tk)

DA

y(tk)
xa

H,1..n(tk)xa
H,1..n(tk)xa
H,1..n(tk)xa
H,1..n(tk)

EnKF-LR

EnKF-HR SRDA

Observation error High4

Low4 Low4

High-resolution processes Poorly resolved4

Resolved4 Emulated4

Computational cost Low4

High4 Low4

Ensemble size Big4

Small4 Big4

4



Motivation and method

EnKF - Low Resolution (EnKF-LR)

xa
L,1..n(tk−1)

ML

(run N times)

xf
L,1..n(tk)

DA

y(tk)
xa

L,1..n(tk)xa
L,1..n(tk)xa
L,1..n(tk)xa
L,1..n(tk)

EnKF - High Resolution (EnKF-HR)
xa

H,1..n(tk−1)

MH

(run N times)

xf
H,1..n(tk)

DA

y(tk)
xa

H,1..n(tk)xa
H,1..n(tk)xa
H,1..n(tk)xa
H,1..n(tk)

EnKF-LR

EnKF-HR SRDA

Observation error High4

Low4 Low4

High-resolution processes Poorly resolved4

Resolved4 Emulated4

Computational cost Low4

High4 Low4

Ensemble size Big4

Small4 Big4

4



Motivation and method

EnKF - Low Resolution (EnKF-LR)

xa
L,1..n(tk−1)

ML

(run N times)

xf
L,1..n(tk)

DA

y(tk)
xa

L,1..n(tk)xa
L,1..n(tk)xa
L,1..n(tk)xa
L,1..n(tk)

EnKF - High Resolution (EnKF-HR)
xa

H,1..n(tk−1)

MH

(run N times)

xf
H,1..n(tk)

DA

y(tk)
xa

H,1..n(tk)xa
H,1..n(tk)xa
H,1..n(tk)xa
H,1..n(tk)

EnKF-LR EnKF-HR

SRDA

Observation error High4 Low4

Low4

High-resolution processes Poorly resolved4 Resolved4

Emulated4

Computational cost Low4 High4

Low4

Ensemble size Big4 Small4

Big4

4



Motivation and method

EnKF - Super-resolution (SRDA)
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Model used

▶Model used: Quasi-geostrophic model[1]

Configuration State size Cost
HR 129×129 C
LR 65×65 C/8
ULR 33×33 C/64

▶Observations:
• True value perturbed by a gaussian noise
of standard deviation 2

• available every ∆t = 12
• positionned along simulated satellite
tracks (black dots on the figures)

Downscaling operator?
▶A simple cubic spline interpolation
▶A neural network
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Training set for the neural network

▶Running one simulation of the HR model.
▶ Computing a dataset of matching pairs between a (U)LR and a HR state:
(xL,k, xH,k)
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U : Upscaling (subsampling
operator)

D: Downscaling (Neural
network)

▶ Size of the dataset: 10,000
▶ 8000 for training / 2000 for
validation
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Setup of the neural network
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Architecture of the enhanced deep super-resolution network (EDSR) [2]
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Training of the neural network

Minimize the mean absolute error (MAE):

L(w) =
K∑
k=1

S∑
i=1

|D(xL,k)i − xH,k,i| ,

i: the pixel index
S: size of the state (129×129)
K: size of the training set (K=8000)
w: weights of the neural network (∼ 20, 000)

Training curve
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Downscaling performance (1)

▶ Illustration with one sample

red lines: Contour of the true HR state
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Model error correction
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Model error correction
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Downscaling performance (2)

▶ Score on the validation dataset
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Super-resolution data assimilation performance

▶ Twin experiments with 500 assimilation cycles
▶ Sensitivity analysis to find the optimal localisation and inflation
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Super-resolution data assimilation performance

Low-resolution error (in time)
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Super-resolution data assimilation performance

Low-resolution correlation
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Spread/error of the ensemble

Low-resolution spread/error
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Spread/error of the ensemble
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Time performance

▶Running 25 members sequentially
▶ Same inflation and localization coefficients

Time s. SRDA-cubic SRDA-NN EnKF

LR ULR LR ULR HR LR ULR

Integration 192 84 188 82 1144 168 62
Downscaling 13 11 34 38 – – –
Assimilation 313 298 304 294 284 76 22
Upscaling 14 12 13 12 – – –

Total 532 405 539 426 1428 244 84

Time s. LR ULR

Training 494 531
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Conclusions/perspectives

Main results
▶ SRDA performs a DA close to the High-resolution model, accuracy for the
cost of a low-resolution model,
▶ The NN can correct systematic differences of eddy propagation caused by
low resolution,
▶ The results are stable in time,
▶ The spread is well represented.

Perspectives
▶Application to a more realistic (multivariate) model,
▶Application only to local regions of the domain,
▶Use NN-downscaling for the initialization of forecasts.
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