Super-resolution data assimilation (SRDA)

Sébastien Barthélémy^{1,2}, Julien Brajard^{3,4}, Laurent Bertino³, François Counillon^{1,2,3} June 8, 2021

¹University of Bergen, ²Bjerknes Centre for Climate Research, ³Nansen Environmental and Remote Sensing Centre, ⁴Sorbonne Université

- 1. Motivation and method
- 2. Model used
- 3. Training and set-up of the neural network
- 4. Numerical results

Downscaling performance

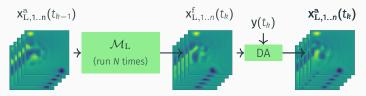
Super-resolution data assimilation performance

Time performance

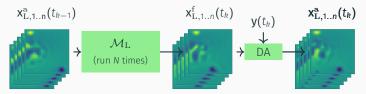
5. Conclusion and perspectives

- 2. Model used
- 3. Training and set-up of the neural network
- 4. Numerical results
- 5. Conclusion and perspectives

EnKF - Low Resolution (EnKF-LR)

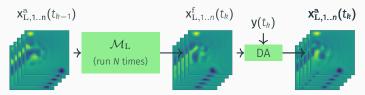


EnKF - Low Resolution (EnKF-LR)

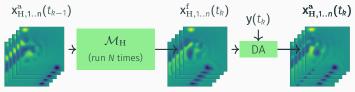


	EnKF-LR	
Observation error	High✔	
High-resolution processes	Poorly resolved🖌	
Computational cost	Low	
Ensemble size	Big✔	

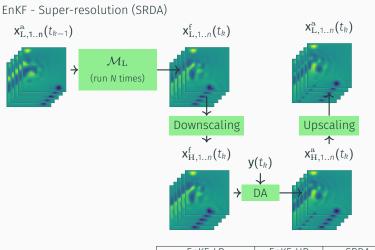
EnKF - Low Resolution (EnKF-LR)



EnKF - High Resolution (EnKF-HR)



	EnKF-LR	EnKF-HR	
Observation error	High✔	Low	
High-resolution processes	Poorly resolved🖌	Resolved 🖌	
Computational cost	Low	High✔	
Ensemble size	Big✔	Small🖌	



	EnKF-LR	EnKF-HR	SRDA	
Observation error	High✔	Low	Low	
High-resolution processes	Poorly resolved🖌	Resolved 🗸	Emulated✔	
Computational cost	Low	High✔	Low	
Ensemble size	Big✔	Small🖌	Big✔	

2. Model used

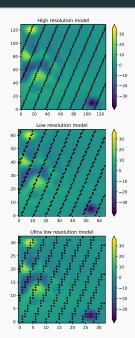
- 3. Training and set-up of the neural network
- 4. Numerical results
- 5. Conclusion and perspectives

Model used: Quasi-geostrophic model[1]

Configuration	State size	Cost
HR	129×129	С
LR	65×65	C/8
ULR	33×33	C/64

Observations:

- True value perturbed by a gaussian noise of standard deviation 2
- \cdot available every $\Delta t =$ 12
- positionned along simulated satellite tracks (black dots on the figures)



Model used: Quasi-geostrophic model[1]

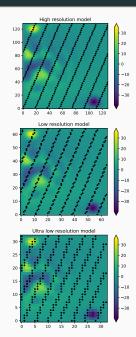
Configuration	State size	Cost
HR	129×129	С
LR	65×65	C/8
ULR	33×33	C/64

Observations:

- True value perturbed by a gaussian noise of standard deviation 2
- · available every $\Delta t =$ 12
- positionned along simulated satellite tracks (black dots on the figures)

Downscaling operator?

- ► A simple cubic spline interpolation
- A neural network



- 1. Motivation and method
- 2. Model used

3. Training and set-up of the neural network

- 4. Numerical results
- 5. Conclusion and perspectives

▶ Running one simulation of the HR model.

 \blacktriangleright Computing a dataset of matching pairs between a (U)LR and a HR state: $(x_{{\rm L},{\it k}},x_{{\rm H},{\it k}})$

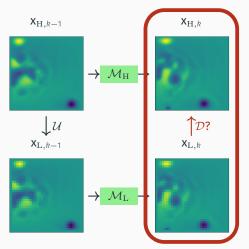


U: Upscaling (subsampling operator)

Training set for the neural network

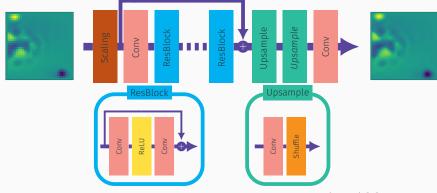
Running one simulation of the HR model.

 \blacktriangleright Computing a dataset of matching pairs between a (U)LR and a HR state: $(x_{{\rm L},{\it k}},x_{{\rm H},{\it k}})$



U: Upscaling (subsampling operator)D: Downscaling (Neural network)

Size of the dataset: 10,000
8000 for training / 2000 for validation



Architecture of the enhanced deep super-resolution network (EDSR) [2]

Training of the neural network

Minimize the mean absolute error (MAE):

$$L(\mathbf{w}) = \sum_{k=1}^{K} \sum_{i=1}^{S} \left| \mathcal{D}(\mathbf{x}_{\mathrm{L},k})_{i} - X_{\mathrm{H},k,i} \right|,$$

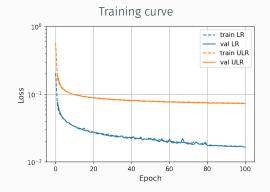
- *i*: the pixel index
- S: size of the state (129×129)
- *K*: size of the training set (K=8000)
- w: weights of the neural network (\sim 20, 000)

Training of the neural network

Minimize the mean absolute error (MAE):

$$L(\mathbf{w}) = \sum_{k=1}^{K} \sum_{i=1}^{S} \left| \mathcal{D}(\mathbf{x}_{\mathrm{L},k})_{i} - X_{\mathrm{H},k,i} \right|,$$

- *i*: the pixel index
- S: size of the state (129×129)
- K: size of the training set (K=8000)
- w: weights of the neural network (\sim 20, 000)



- 1. Motivation and method
- 2. Model used
- 3. Training and set-up of the neural network

4. Numerical results

5. Conclusion and perspectives

- 1. Motivation and method
- 2. Model used
- 3. Training and set-up of the neural network

4. Numerical results

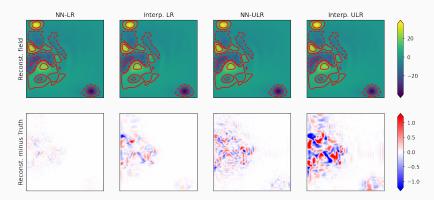
Downscaling performance

Super-resolution data assimilation performance

Time performance

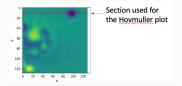
5. Conclusion and perspectives

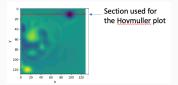
▶ Illustration with one sample

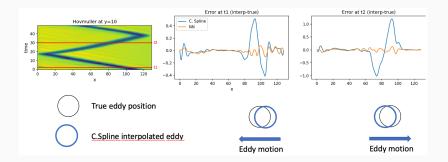


red lines: Contour of the true HR state

Model error correction

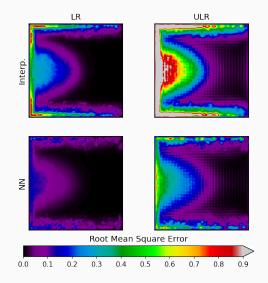






Downscaling performance (2)

Score on the validation dataset



- 1. Motivation and method
- 2. Model used
- 3. Training and set-up of the neural network

4. Numerical results

Downscaling performance

Super-resolution data assimilation performance

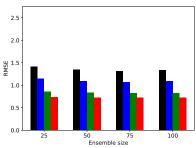
Time performance

5. Conclusion and perspectives

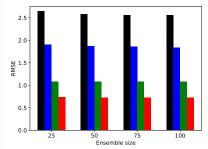
Super-resolution data assimilation performance

▶ Twin experiments with 500 assimilation cycles

Sensitivity analysis to find the optimal localisation and inflation



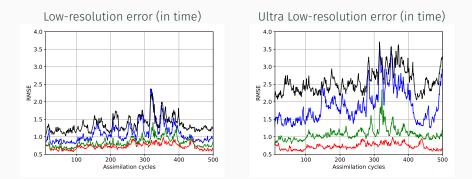
Low-resolution error



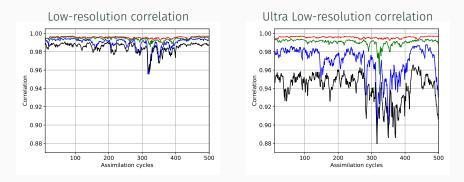
Ultra Low-resolution error

- DA in low-resolution
- SRDA with cubic spline interpolation
- SRDA with NN downscaling
- DA in high-resolution

Super-resolution data assimilation performance

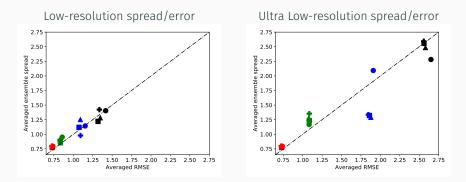


- DA in low-resolution
- SRDA with cubic spline interpolation
- SRDA with NN downscaling
- DA in high-resolution



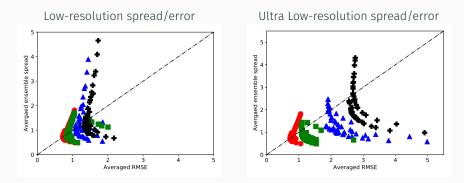
- DA in low-resolution
- SRDA with cubic spline interpolation
- SRDA with NN downscaling
- DA in high-resolution

Spread/error of the ensemble



- DA in low-resolution
- SRDA with cubic spline interpolation
- SRDA with NN downscaling
- DA in high-resolution

Spread/error of the ensemble



- DA in low-resolution
- SRDA with cubic spline interpolation
- SRDA with NN downscaling
- DA in high-resolution

- 1. Motivation and method
- 2. Model used
- 3. Training and set-up of the neural network

4. Numerical results

Downscaling performance

Super-resolution data assimilation performance

Time performance

5. Conclusion and perspectives

Running 25 members sequentially

> Same inflation and localization coefficients

Time s.	SRDA-cubic		SRDA-NN		EnKF			
	LR	ULR	LR	ULR		HR	LR	ULR
Integration	192	84	188	82		1144	168	62
Downscaling	13	11	34	38		-	-	_
Assimilation	313	298	304	294		284	76	22
Upscaling	14	12	13	12		-	-	-
Total	532	405	539	426		1428	244	84
		Time s.	LR	ULR				
		Training	494	531				

- 1. Motivation and method
- 2. Model used
- 3. Training and set-up of the neural network
- 4. Numerical results
- 5. Conclusion and perspectives

Main results

- ▶ SRDA performs a DA close to the High-resolution model, accuracy for the cost of a low-resolution model,
- ▶ The NN can correct systematic differences of eddy propagation caused by low resolution,
- ▶ The results are stable in time,
- ▶ The spread is well represented.

Main results

▶ SRDA performs a DA close to the High-resolution model, accuracy for the cost of a low-resolution model,

► The NN can correct systematic differences of eddy propagation caused by low resolution,

- ▶ The results are stable in time,
- ▶ The spread is well represented.

Perspectives

- > Application to a more realistic (multivariate) model,
- > Application only to local regions of the domain,
- ▶ Use NN-downscaling for the initialization of forecasts.

Pavel Sakov and Peter R. Oke.

A deterministic formulation of the ensemble Kalman filter: An alternative to ensemble square root filters. Tellus, Series A: Dynamic Meteorology and Oceanography, 60 A(2):361–371, 2008. doi:10.1111/j.1600-0870.2007.00299.x.

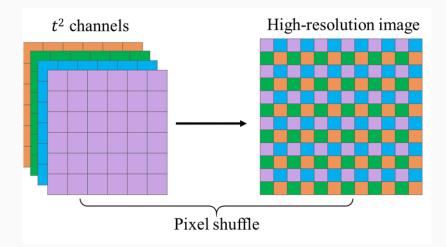
Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee.

Enhanced deep residual networks for single image super-resolution.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, July 2017.

sebastien.barthelemy@uib.no - julien.brajard@nersc.no

Acknowledgement: NFR project SFE(#2700733)



Qin, Mengjiao, et al. "Remote Sensing Single-Image Resolution Improvement Using A Deep Gradient-Aware Network with Image-Specific Enhancement." *Remote Sensing* 12.5 (2020): 758.