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CEREA, joint laboratory École des Ponts ParisTech and EDF R&D, France

M. Bocquet EnKF Workshop 2021, organized by NORCE Energy, NERSC and Equinor 1 / 38



Goals

Goals

1 Goals

2 Surrogate model representation

3 Model identification as a variational offline data assimilation problem

4 Online learning of state, model and forcings

5 Covariance localization

6 Augmented dynamics and the unstable/neutral subspace

7 Conclusions

8 References

9 Domain localization

M. Bocquet EnKF Workshop 2021, organized by NORCE Energy, NERSC and Equinor 2 / 38



Goals

From model error to the absence of a model

IAt crossroads between:

Data Assimilation (DA), Machine Learning (ML) and Dynamical Systems (DS)

IGoal: Estimate autonomous chaotic dynamics from partial and noisy observations

−→ Surrogate model

ISubgoal 1: Develop a Bayesian framework for this estimation problem. X

ISubgoal 2: Estimate and minimize the errors attached to the estimation. X

ISubgoal 3: What about more complex models? learning hybrid models. X

ISubgoal 4: What about online (sequential) learning?

−→ This talk [ensemble methods]!

IReferences connected to data-driven reconstruction of the dynamics in DA and ML:
[Park et al. 1994; Wang et al. 1998; Paduart et al. 2010; Lguensat et al. 2017; Pathak et al. 2017; Harlim

2018; Dueben et al. 2018; Long et al. 2018; Fablet et al. 2018; Vlachas et al. 2020; Brunton et al. 2016]

and many more since the beginning of 2020.
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Surrogate model representation

ODE representation for the surrogate model

IOrdinary differential equations (ODEs) representation of the surrogate dynamics

dx
dt

=φA(x),

where A is a set of Np coefficients.

IWe need:

to specify the tendency x 7→φA(x),

to choose a numerical scheme to integrate in time the tendency φA and be able to
build resolvent of the surrogate dynamics xk+1 = FA(xk ).

IGoing beyond, we wish to account for (surrogate) model error, so that the surrogate
model representation is actually an SDE:

dx=φA(x)dt+
√
QdW(t),

with W(t) an Nx-dimensional Wiener process.
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Surrogate model representation

Integration scheme and cycling

x0 xk xk+1 xK

xk,0 xk,l xk,l+1 xk,Nk
c

y0 yk yk+1 yK

Fk−1
A ◦ · · · ◦ F0

A Fk
A FK−1

A ◦ · · · ◦ Fk+1
A

f lA fA f
Nk

c −l−1
A

IChoosing a Runge-Kutta method as integration scheme:

fA(x) = x+h

NRK−1∑
i=0

βiki , ki =φA

x+h
i−1∑
j=0

αi ,jkj

 .

ICompositions of integration schemes:

xk+1 = Fk
A(xk ) where FkA ≡ f

Nk
c

A ≡ fA ◦ . . .◦ fA︸ ︷︷ ︸
Nk

c times

,
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Surrogate model representation

Neural network models

IWe tested many simple architectures, all following the structure of Nc explicit
Runge-Kutta schemes, with linear or nonlinear activation functions:

IφA: minimal representation (as few parameters as possible), or based on a NN
(with potentially many parameters) implemented in TensorFlow 2.x

IConvolutional layers were used for local, homogeneous systems.

I Locally connected convolutional layers were used for local, heterogeneous systems.
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Model identification as a variational offline data assimilation problem

Bayesian analysis of the joint problem

IBayesian view on state and model estimation:

p(A,Q1:K ,x0:K |y0:K ,R0:K ) =
p(y0:K |x0:K ,A,Q1:K ,R0:K )p(x0:K |A,Q1:K )p(A,Q1:K )

p(y0:K ,R0:K )
.

IData assimilation cost function assuming Gaussian errors and Markovian dynamics:

J(A,x0:K ,Q1:K ) =
1

2

K∑
k=0

{
‖yk −Hk (xk )‖2

R−1
k

+ ln |Rk |
}

+
1

2

K∑
k=1

{∥∥∥xk −Fk−1
A (xk−1)

∥∥∥2

Q−1
k

+ ln |Qk |

}
− lnp(x0,A,Q1:K ).

−→ This is a (4D) variational problem.
−→ Allows to rigorously handle partial and noisy observations.

ITypical machine learning cost function with Hk = Ik in the limit Rk −→ 0:

J(A)≈ 1

2

K∑
k=1

∥∥∥yk −Fk−1
A (yk−1)

∥∥∥2

Q−1
k

− lnp(y0,A).

Similar outcome or improved upon [Hsieh et al. 1998; Abarbanel et al. 2018].
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Model identification as a variational offline data assimilation problem

Experiment plan

IThe reference model, the surrogate model and the forecasting system

δtr

δta

δtf

∆t

t0 tK

t0 tK

T + TfT

y0 yK

generating physical states

training step

forecast step

yk yk+1

IMetrics of comparison:

Forecast skill [FS]: Normalized RMSE (NRMSE) between the reference and
surrogate forecasts as a function of lead time (averaged over initial conditions).

Lyapunov spectrum [LS].

Power spectrum density [PSD].
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Model identification as a variational offline data assimilation problem

Almost identifiable model and perfect observations

I Inferring the dynamics from dense & noiseless observations of a non-identifiable model

The Lorenz 96 model (40 variables). Surrogate model based on an RK2 scheme.

dxn
dt

= (xn+1 −xn−2)xn−1 −xn+F ,
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Model identification as a variational offline data assimilation problem

Application to the one-scale Lorenz-96 model

IVery good reconstruction of the long-term properties of the model (L96 model).

I CNN+RK4
I Approximate scheme
I Fully observed
I Significantly noisy observations R= I
I Long window K = 5000, ∆t = 0.05
I EnKS with L= 4
I 30 EM iterations
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Model identification as a variational offline data assimilation problem

Non-identifiable model and imperfect observations

IThe Lorenz 05III (two-scale) model (36 slow & 360 fast variables).

dxn
dt

=ψ+
n (x)+F −h

c

b

9∑
m=0

um+10n,

dum
dt

=
c

b
ψ−
m(bu)+h

c

b
xm/10, with ψ±n (x) = xn∓1(xn±1 −xn∓2)−xn,
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Model identification as a variational offline data assimilation problem

Application to the two-scale Lorenz-05III model

IGood reconstruction of the long-term properties of the model (L05III model).

I CNN+RK4
I Approximate scheme
I Observation of the coarse modes only
I Significantly noisy observations R= I
I Long window K = 5000, ∆t = 0.05
I EnKS with L= 4
I 30 EM iterations
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Online learning of state, model and forcings

Online learning scheme: Principle

ISo far, learning was offline, i.e. based on variational technique using all available
data. Can one design a sequential (online) scheme that progressively updates both the
state and the model as data are collected?

I In the following, we make the assumptions:
(i) autonomous and local dynamics,
(ii) homogeneous dynamics or heterogeneous dynamics, or mixed dynamics.

IAll parameters of the model are hereafter noted:

A−→ p ∈ RNp [Global parameters], q ∈ RNq [local parameters].

IAugmented state formalism [Jazwinski 1970; Ruiz et al. 2013]:

z=

 x
p
q

 ∈ RNz , with Nz = Nx +Np +Nq.

Just a (more ambitious) parameter estimation problem!?
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Online learning of state, model and forcings

Online learning scheme: The problem

IWe use the augmented state formalism with ensemble Kalman filters (EnKFs):

1 global deterministic EnKFs (EnSRF, ETKF),

2 global iterative EnKF (IEnKF), key for nonlinearity.

3 local EnKFs (LEnSRF, LETKF), key for scalability.

IAdequacy and inadequacy between the main LEnKF classes and the estimation of
local and global parameters.

Global parameters Local parameters Mixed set of parameters
LEnSRF well suited suited unclear

CL localization in parameter space? numerically costly solution proposed here
LETKF only approximate (average) well suited unclear

DL solution proposed here solution proposed here

IWe assume that the observbations are local whenever DL is used.

INonlocal observations require CL.
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Online learning of state, model and forcings

Online learning scheme: Notation

IAugmented ensemble matrix: E ∈ RNz×Ne

IEnsemble means and anomalies:

z̄, E1/Ne,

X,
(
E− z̄1>

)
/
√

Ne −1,

ISplitting state/global/local:

E=

Ex

Ep

Eq

 , z̄=

 x̄p̄
q̄

 , X=

Xx

Xp

Xq

 , and A=

Axx Axp Axq

Apx App Apq

Aqx Aqp Aqq

 .

IObservation operator (key assumption!):

H=

Hx

0
0

 .
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Online learning of state, model and forcings

Online learning scheme: EnKF two-step update

IThe ensemble update (analysis) can be decomposed into a two-step scheme:

1 Update the state part of the ensemble Ef
x −→ Ea

x using an EnKF.

2 Update the parameter part of the ensemble:

Ea
p = Ef

p +BpxB
−1
xx

(
Ea

x −Ef
x

)
,

which can be computed:
(i) solving the linear system Bxx∆= Ea

x −Ef
x, and

(ii) updating Ea
p = Ef

p +Bpx∆ (linear regression!).

IThis can actually be proven for any statistical assumption provided the parameters
are not directly observed. Should also remain valid for the update of local EnKFs.

[Bocquet et al. 2020b]
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Covariance localization

The EnSRF-ML update (global parameters)

IConvenient reformulation of the EnSRF update in the observation space, follows
[Andrews 1968; Whitaker et al. 2002; Bocquet 2016; Malartic et al. 2021]:

IAncillary matrices:

T, I+R−1/2HxBxxH
>
x R−1/2 ∈ RNy×Ny ,

ux ,H>x R−1/2T−1R−1/2
(
y−Hxx̄

f
)
∈ RNx ,

Ux ,−H>x R−1/2
(
T+T1/2

)−1
R−1/2HxX

f
x ∈ RNx×Ne .

IUpdates:

∆x̄= Bxxux, ∆Xx = BxxUx,

∆p̄= Bpxux ∆Xp = BpxUx.

[Malartic et al. 2021]
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Covariance localization

The LEnSRF-ML update (global parameters)

ICovariance localization in the augmented space:

Bxx = ρxx ◦
[
Xf

x

(
Xf

x

)>]
,

Bpx = ρpx ◦
[
Xf

p

(
Xf

x

)>]
= B>xp,

Bpp = ρpp ◦
[
Xf

p

(
Xf

p

)>]
.

IThe localization matrix ρxx is the usual localization matrix and almost certainly
makes Bxx positive definite.

IThe localization matrix ρpx has to be uniform because the parameters are global.

The most natural choice is to use ρpx = ζΠpx, where Πpx ∈ RNp×Nx is the matrix full of
ones, and where ζ is a tuning parameter [Ruckstuhl et al. 2018].

IFor simplicity, we assume ρpx =Πpx and enforce the tapering coefficient ζ in the
update:

∆p̄= ζBpxux, ∆Xp = ζBpxUx.
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Covariance localization

Numerics: Optimal tapering coefficient (global parameters)
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IMathematical constraint: B must be positive definite −→ constraint on ζ.

IOptimal scaling of the tapering consistent with [Ruckstuhl et al. 2018; Bocquet et al. 2020a]:

ζ <

√
λmin

Nx
.

[Bocquet et al. 2020b]
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Covariance localization

The LEnSRF-HML update (mixed parameters)

IUpdating both global and local parameters (hybrid updating). We simply add:

∆q̄= Bqxux, ∆Xq = BqxUx.

IWithout localization, there is no distinction between local and global parameters.

IWith localization we define

Bqx = ρqx ◦
[
Xf

q

(
Xf

x

)>]
= B>xq,

Bqp = ρqp ◦
[
Xf

q

(
Xf

p

)>]
= B>pq,

Bpp = ρqq ◦
[
Xf

q

(
Xf

q

)>]
.

INeither ρqp, nor ρqq have to be specified.

IAs opposed to ρpx, ρqx has to reflect the geometry of the local parameters and state
variables.
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Augmented dynamics and the unstable/neutral subspace

The augmented dynamics

IAugmented dynamics (model persistence or Brownian motion):[
xk
pk

]
7→
[

Fk (xk ,pk )
pk

]
IAssuming (i) N0 is the dimension of the unstable neutral subspace of the reference
dynamics, (ii) Ne is the size of the ensemble, then, in order for the augmented global

EnKF (EnKF-ML) to be stable, we must have: Ne ' N0 +Np +1.
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Augmented dynamics and the unstable/neutral subspace

The augmented dynamics: Asymptotic properties

I Lyapunov spectra for the true and augmented L96.
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Augmented dynamics and the unstable/neutral subspace

Numerics (global parameters)

I LEnSRF and LEnSRF-ML applied to the L96 and L05III models.
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Conclusions

Conclusions

The main results presented here are from [Bocquet et al. 2020a; Malartic et al. 2021], with
preliminaries from [Bocquet et al. 2019]

IMain messages:

Bayesian DA view on state and model estimation.
DA can address goals assigned to ML but with partial & noisy observations.

Online EnKFs-ML can also be used to sequentially estimate both state and model.

Rigorous ensemble solutions for joint state var./local par./global par. estimation.

Theoretical results (backed by numerics):

LEnKF\Parameters Global Local Mixed
CL clarified existing clarified
DL new and improved existing new and improved

Successful on 1D low-order models (L96, L05III).

IOpen questions and technical hardships (non-exhaustive):

Non-autonomous dynamics?

More complex models?

A 2D case with the mL96 model for radiances like-observations, that mixes CL and
DL, local and global parameters and nonlocal observations is under test.
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Domain localization

The ensemble transform Kalman filter (domain localization)

IGeneric ETKF update (incremental)

∆z̄= Xfwa, ∆X= Xf
(
T−1/2 − I

)
.

with the definitions:

Y ,HXf ,

T, I+Y>R−1Y,

wa , T−1Y>R−1
(
y−Hz̄f

)
.

INow, assume that the observations are local. The domain localization (DL) of the
ETKF (LETKF) uses for each augmented state variable n ∈ {1, . . . ,Nz}:

R−1
n , ρn ◦R−1,

where ρn ∈ RNy×Ny is the localization matrix in observation space for the n-th variable.
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Domain localization

The LETKF-ML (global parameters)

IUpdate of the ETKF-ML

∆x̄= Xf
xw

a, ∆Xx = Xf
x

(
T−1/2 − I

)
,

∆p̄= Xf
p

(
Xf

x

)>
ux, ∆Xp = Xf

p

(
Xf

x

)>
Ux,

with the definition (on the right/local version):

ux =H>x R−1
(
y−Hxx̄

f −Ywa
)

,

Ux =−H>x R−1Y
(
T+T1/2

)−1
.

IThis global parameter update is fully consistent with the DL framework.
This is an improvement over the [Aksoy et al. 2006; Fertig et al. 2009; Hu et al. 2010] average
semi-empirical technique!

IWith the tapering coefficient:

∆p̄= ζXf
p

(
Xf

x

)>
ux, ∆Xp = ζXf

p

(
Xf

x

)>
Ux,
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Domain localization

The LETKF-HML (mixed parameters)

ITo account for local parameters, a very simple addition to the LETKF-ML scheme:

∆q̄= Xf
qw

a,

∆Xq = Xf
q

(
T−1/2 − I

)
.
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Domain localization

Numerics (assorted LETKFs-ML)

I L96 model where the forcing is inhomogeneous: F = 8+ sin(2πn/Nx)
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LETKF (wrong model): known dynamics except for F = 8.

LETK-ML: unknown dynamics but known forcing

LETKF-LML: known dynamics but unknown forcing

LETKF-HML: unknown dynamics, unknown forcing
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