
 1 / 24

A new framework for elastic
ensemble-based data assimilation at
large-scale

Sebastian Friedemann, Inria

sebastian.friedemann@inria.fr, bruno.raffin@inria.fr

-DA

This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No
824158 (EoCoE-2). This work was granted access to the HPC resources of IDRIS under the allocation 2020-A8 A0080610366 attributed by
GENCI(Grand Equipement National de Calcul Intensif).

mailto:sebastian.friedemann@inria.fr
mailto:bruno.raffin@inria.fr

 2 / 24

Motivation
● Data Assimilation (DA) for more and more complex models

– Higher resolution (curse of dimensionality)

– Account for very chaotic situations

– Some filters need much more members (e.g., Particle Filters)

● Traditional approaches rely on file system or large monolithic jobs that are hard to
govern (long wait time, large lost on crash of a single component)

● This motivates a framework that is

– Fast avoiding startup costs and data transport through the file system

– Resilient, recovering from faults...

– Modular

– Easy to deploy

● Independence of allocation size from member amount

● Different degrees of parallelism

● We will assimilate the hydrological model code ParFlow:

– a physically based, fully coupled water transfer model for the critical zone

– O(4M) degrees of freedom, 16 000 members, using EnKF

 3 / 24

DA workflow at the example of
Ensemble Kalman Filter (EnKF)

1. Predict Ensemble
 xb

t,m
 = M(xa

t-1,m
)

2. Compute Kalman Gain

K = PbHT (HPbHT + R)-1

3. Update state estimate

1. Predict Ensemble
 xb

t,m
 = M(xa

t-1,m
)

Propagation PropagationUpdate

Given parallel
model code

Given assimilation
scheme

We will design a framework to map the
workflow parts on a HPC platform

 4 / 24

Off-line workflow
● Members are propagated

● Output is written to disk

● Output is read in

● Filter update is performed

● New model input is written out

● New model input is loaded → next
cycle

● EnTK, DART, PDAF, … support this

Propagation

Update

PropagationPropagation

Propagation PropagationPropagation

+ -

● Easily allows different
parallelisms

● Fault tolerant (restart
problematic
component)

● Enormous pressure
on the file system
when going large
scale

● Model startup
overhead many times

 5 / 24

On-line workflow
● Members are propagated

● Output is gathered on some
compute resources (only RAM to
RAM copy)

● Filter update is performed on
those compute resources

● New model input is scattered
back (only RAM to RAM copy)

● Often implemented using MPI
(e.g., DART, PDAF)

Propagation

Update

PropagationPropagation

Propagation PropagationPropagation

+ -

● Avoid file system
bottleneck

● Avoid model startup
cost

● Multiple
propagations by the
same resource to
decouple resource
usage and members

● Not fault tolerant
(one member failing,
 will crash the whole
run)

● Big monolithic jobs
are necessary

● Idle resources during
update phase

 6 / 24

Towards a new framework:
parallel runners

● Fast avoiding startup costs and data transport through the file system:

– Transform simulation codes into parallel runners

– Parallel runners open connections to a central point where they ask for an
analysis state to propagate

– This is parallelized (there is actually one connection per rank transferring
state parts that need to be assembled to build the full state)

– Then runners propagate this state and send back the resulting background
state

Parallel runner

Propagation

Parallel runner

Propagation

Analysis state
part

Background state
part

Full analysis/
background state

 7 / 24

In the parallel runner

x = Model_Init()

for t < t_end:
 Integrate(x)
 Write_Output(x)

Model_Finalize(x)

 8 / 24

In the parallel runner

Parallel runner

x = Model_Init()

melissa_da_init(…)

while melissa_da_expose(x) != 0:
 Integrate(x)
 # optional: Write_Output(x)

Model_Finalize(x)

Init data assimilation

Change simulation’s time
stepping loop to propagate

state coming from the
Melissa-Da server

 9 / 24

● The Parallel server distributes analysis states
and receives background states

Parallel server

The parallel server

Analysis state
part

Background state
part

Full analysis/
background state

 10 / 24

● The Parallel server distributes analysis states
and receives background states

Parallel server

The parallel server

Analysis state
part

Background state
part

Full analysis/
background state

 11 / 24

Update Phase

● The parallel server performs the filter update
generating the new set of analysis states

– It must be provided a function
transforming background states into
analysis states

Parallel server

Analysis state
part

Background state
part

Full analysis/
background state

 12 / 24

Deployment using the
launcher

● Launcher starts up
components (runner,
server) one by one
interacting with the batch
scheduler

– Each in its own job
allocation

● Launcher also monitors
the components restarts
on error

 13 / 24

Our Approach: -DA

● All connections between components are dynamic (relying on ZeroMQ)

– Components may join / leave the distributed application at any
time

● The launcher takes care to restart components that crashed

● If the server does not receive a full background state in time it will
send the according analysis state for propagation to another runner

 14 / 24

A typical run of Melissa-DA
Member propagations per runner

→ dynamic load balancing
→ run on heterogeneous architecture

 15 / 24

Elasticity, Fault tolerance

Runner amount
constrained, varies
→ The execution never
stops, only its pace
changes

 16 / 24

Modularity

● Modules for different batch scheduler systems (local,
Slurm (JUWELS, Jean-Zay, Marenostrum…))

– can be extended for personal needs
● Any (instrumented) simulation code (M) can be

coupled with any Assimilation method

– Necessitates user to provide functions converting
data, H operator, reading of observations

– C/C++, Fortran or Python API available
● Assimilation methods are modules too

– Use existing code (e.g., PDAF) or prototype your
own (Python possible)

 17 / 24

Deployment

 18 / 24

Scaling – Propagation
phase only

ParFlow: Neckar catchment (800 m horizontal resolution, changing vertical
resolution, 242 km * 214 km * 100 m, 15 min time steps, assimilation every
12 hours) → Assimilating 25 obs into 4 M grid cells, model parallelized on 40-48 cores,

Note: scaling efficiency of the full cycle is 0-3% worse since update step
is fast (0.1 s / 1 s)

 19 / 24

Ø 40 members per runner

Assimilate @ ~20 GiB / s

Scaling – Propagation
phase only

Ø 20 members per runner

16384 members: 2.9 TiB of Data transfer between runners and server per
assimilation cycle

 20 / 24

Open Challenges:

● EnKF does not scale

for large ensembles

– use spatially
distributed EnKF here

– 16k case scaling
efficiency counting
full assimilation cycle:
58 % only

● High RAM consumption

 21 / 24

Open Challenges:

● EnKF does not scale

for large ensembles

– use spatially
distributed EnKF here

– 16k case scaling
efficiency counting
full assimilation cycle:
58 % only

● High RAM consumption

288 Observations assimilated into 4M degrees of freedom on 144 JUWELS
cores

EnKF

 22 / 24

Mitigation and future work

● Use faster (e.g., LEnKF) and less RAM hungry filter update
method

● Iterative EnKF calculation starting during propagation
phase already?

● Revisit EnKF parallelization

● Store member states differently (runner local RAM,
NVRAM…)

● Run the server on runner nodes. Load balancing will help.

● Iterative surrogate learning, adaptive ensemble size...

 23 / 24

Conclusion
● Framework where member propagation can be on any runner
● Based on multiple components
● Communication between components uses dynamic

connections
● This allows:

– Avoid file I/O

– Fast (avoid startup of new models per propagation)

– Load balance different propagation tasks

– Resilient

– Easy to deploy (different degrees of parallelism, instrument
any model, interchangeable Assimilation Update phase
backends

● Paper: “An elastic framework for ensemble-based large-scale
data assimilation“ (hal:
https://hal.archives-ouvertes.fr/hal-03017033v2)

● Current work: Melissa-DA tuned for particle filters with light
weight server

- DA

https://hal.archives-ouvertes.fr/hal-03017033v2

 24 / 24

References for the Slides
● Fowler, Alison. “The Ensemble Kalman Filter,” Lecture notes, 20.

● Dorier, Matthieu, Matthieu Dreher, Tom Peterka, Gabriel Antoniu, Bruno Raffin, and Justin M. Wozniak. “Lessons
Learned from Building In Situ Coupling Frameworks,” 2015. https://doi.org/10.1145/2828612.2828622.

● Nerger, L., W. Hiller, and J. Schröter. “PDAF - THE PARALLEL DATA ASSIMILATION FRAMEWORK: EXPERIENCES WITH
KALMAN FILTERING.” In Use of High Performance Computing in Meteorology, 63–83. Reading, UK: WORLD
SCIENTIFIC, 2005. https://doi.org/10.1142/9789812701831_0006.

● Bautista-Gomez, Leonardo, Seiji Tsuboi, Dimitri Komatitsch, Franck Cappello, Naoya Maruyama, and Satoshi
Matsuoka. “FTI: High Performance Fault Tolerance Interface for Hybrid Systems.” In SC ’11: Proceedings of 2011
International Conference for High Performance Computing, Networking, Storage and Analysis, 1–12, 2011.
https://doi.org/10.1145/2063384.2063427.

● Théophile Terraz, Personal Communication.

● Bruno Raffin, Personal Communication.

● Terraz, Théophile, Alejandro Ribes, Yvan Fournier, Bertrand Iooss, and Bruno Raffin. “Melissa: Large Scale In Transit
Sensitivity Analysis Avoiding Intermediate Files,” 1–14, 2017. https://hal.inria.fr/hal-01607479/document.

● Petrie, Ruth Elizabeth. “Localization in the Ensemble Kalman Filter,” n.d., 80.

● https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUWELS/JUWELS_node.html, retrieved the 03.09.20.

● http://www.idris.fr/jean-zay/jean-zay-presentation.html, retrieved the 03.09.20.

● Image by University of the Fraser Valley - https://www.flickr.com/photos/ufv/14698165796/, CC BY 2.0,
https://commons.wikimedia.org/w/index.php?curid=54110312

● Anderson, Jeffrey, Tim Hoar, Kevin Raeder, Hui Liu, Nancy Collins, Ryan Torn, and Avelino Avellano. “The Data
Assimilation Research Testbed: A Community Facility.” Bulletin of the American Meteorological Society 90, no. 9
(September 1, 2009): 1283–96. https://doi.org/10.1175/2009BAMS2618.1.

https://doi.org/10.1142/9789812701831_0006
https://hal.inria.fr/hal-01607479/document
https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUWELS/JUWELS_node.html
http://www.idris.fr/jean-zay/jean-zay-presentation.html
https://commons.wikimedia.org/w/index.php?curid=54110312

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

