i S >

Databove S e

ELISSA-DA

Data Aware Large Scale Computing

M

A new framework for elastic
ensemble-based data assimilation at
large-scale

Sebastian Friedemann, Inria

sebastian.friedemann@inria.fr, bruno.raffin@inria.fr
1/24

This project has received funding from the European Union’'s Horizon 2020 research and innovation program under grant agreement No
824158 (EoCoE-2). This work was granted access to the HPC resources of IDRIS under the allocation 2020-A8 A0080610366 attributed by
GENCI(Grand Equipement National de Calcul Intensif).

mailto:sebastian.friedemann@inria.fr
mailto:bruno.raffin@inria.fr

I Motivation

 Data Assimilation (DA) for more and more complex models

- Higher resolution (curse of dimensionality)
- Account for very chaotic situations
- Some filters need much more members (e.qg., Particle Filters)

« Traditional approaches rely on file system or large monolithic jobs that are hard to
govern (long wait time, large lost on crash of a single component)

« This motivates a framework that is

- Fast avoiding startup costs and data transport through the file system
- Resilient, recovering from faults...
- Modular
- Easy to deploy
* Independence of allocation size from member amount
« Different degrees of parallelism

« We will assimilate the hydrological model code ParFlow:

- a physically based, fully coupled water transfer model for the critical zone 2/24

- 0O(4M) degrees of freedom, 16 000 members, using EnKF

DA workflow at the example of
Ensemble Kalman Filter (EnKF)

t-1 t t+1
@ > © > @

New Observations

A

2. Compute Kalman Gain
PPHT = Xb(Xb)THT= Xb(HXb)T —
3 (R0, <X, >) (HRY, - <H(,)>)T

HPPH"= HXP(HX)T =
‘ Ly (Hx?, - <H(xb,)>) (Hx?, <H(,)>)T ‘
K = P"H" (HP°H™ + R)*

3. Update state estimate
x*=x"+ K(y-Hx?) = (I-KH) x* + Ky

Update Propagation

I Off-line workflow

« Members are propagated

« Qutput is written to disk
 Qutputis read in

* Filter update is performed
 New model input is written out

* New model input is loaded — next
cycle

 ENTK, DART, PDAF, ... support this

Update

+ -

* Easily allows different + Enormous pressure

parallelisms on the file system
e Fault tolerant (restart when going large

problematic scale

component) * Model startup

overhead many times

I On-line workflow

Update

el I

+ -

* Avoid file system * Not fault tolerant

bottleneck (one member failing,
* Avoid model startup will crash the whole
cost run)
* Multiple * Big monolithic jobs

propagations by the
same resource to
decouple resource
usage and members

are necessary

update phase

* |dle resources during

Members are propagated

Output is gathered on some
compute resources (only RAM to
RAM copy)

Filter update is performed on
those compute resources

New model input is scattered
back (only RAM to RAM copy)

Often implemented using MPI
(e.g., DART, PDAF)

5/24

Towards a new framework:
parallel runners

« Fast avoiding startup costs and data transport through the file system:

Transform simulation codes into parallel runners

Parallel runners open connections to a central point where they ask for an
analysis state to propagate

This is parallelized (there is actually one connection per rank transferring
state parts that need to be assembled to build the full state)

Then runners propagate this state and send back the resulting background
state

Analysis state
part

Q Background state
part

.D. Full analysis/
O @ background state

N o0 ol

I In the parallel runner

//// - 7%%\\\\
/ / \\
/
s/

A\
\
\
\

X = Model Init()

for t < t end:
Integrate(x)
Write Qutput(x)

Model Finalize(x)

\\\\\ ///// 7124

I In the parallel runner

/ Parallel runner \

X = Model Init()

melissa da init(..)

while melissa da expose(x) != 0:
Integrate(x)
optional: Write Output(x)

Model Finalize(x)

\ Yy

IThe parallel server

* The Parallel server distributes analysis states
and receives background states

Analysis state
part

Q Background state
part

.D. Full analysis/
O @ background state

9/24

IThe parallel server

* The Parallel server distributes analysis states
and receives background states

Analysis state
part

Q Background state
part

.D. Full analysis/
O @ background state

10/ 24

I Update Phase

* The parallel server performs the filter update
generating the new set of analysis states

- It must be provided a function

transforming background states into
analysis states

PDAFParaIIeI

Data Assimilation
Framework

/ Parallel server \

RN

A 4

Analysis state
part

C> Background state
part

.D. Full analysis/
O @ background state

11/24

Deployment using the
launcher

* Launcher starts up
components (runner,

Batch Scheduler

BT server) one by one
» interacting with the batch
scheduler
Submit Jobs Job Status
- Each in its own job
Launcher allocation
- Submit and monitor jobs
- Manage recovery on .
sever o runner fals * Launcher also monitors

the components restarts
on error

12 /24

I Our Approach: MELISSA -DA

Parallel Clients: propagate members

Batch Scheduler

Run Jobs
Parallel Runner Parallel Runner oe@ Parallel Runner
ﬂm .Jobs

Dynamic
Connections

Analysis

Submit Jobs Job Status Stnbes

Launcher
- Submit and monitor jobs Work Progress
= Mﬂ"ﬂgc mco\"cry on
server or runner fault

Parallel Server:
1. Gather background states from runners
2. Update states (PDAF DA engine)

1. Distribute analysis statcs to runners

. 4
g U
Observations

All connections between components are dynamic (relying on ZeroMQ)

- Components may join / leave the distributed application at any
time

The launcher takes care to restart components that crashed

If the server does not receive a full background state in time it will

send the according analysis state for propagation to another runner 3/ 24

I A typical run of Melissa-DA

Member propagations per runner

50~

30- i '

30~ ; '

runner

10-

- dynamic load balancing

- run on heterogeneous architecture

50
walltime (s)

bl

100

T

1

o B

HHA

member id

s 750
500

250

14 /24

sticity, Fault tolerance

14 -

12 1

=t
=]
L

Runners

Constrained maximum runners
Active runners as recognized by the server

r—
1
1
1
1
1
1
1
1
1
[
I

[

Finished propagations per 10 seconds

2.5

5.0

7.5

10.0
tin minutes

12;,5

15.0

17.5

20.0

Runner amount
constrained, varies

- The execution never
stops, only its pace
changes

15/24

Slurm (JUWELS, Jean-Zay, Marenostrum...))

- cah be extended for personal needs

* Any (instrumented) simulation code (M) can be
coupled with any Assimilation method

- Necessitates user to provide functions converting
data, H operator, reading of observations

- C/C++, Fortran or Python API available
 Assimilation methods are modules too

- Use existing code (e.qg., PDAF) or prototype your
own (Python possible) 1624

I Deployment

TLDR - How to run a DA study:

1. Install Melissa-DA & dependencies

2. Instrument and link your model against Melissa-DA (or use one of the example models to start)

3. Configure your assimilator by writing a new assimilator or writing a new pdaf-wrapper library to be preloaded at runtime (or use
one of the existing assimilators for the beginning)

4. Launch your simulation from within a simple python script:

from melissa da study import *

run_melissa da study(

runner_cmd="simulationl', # which model code to use
total steps=3, # how many assimilation cycles to run
ensemble size=3, # ensemble size
assimilator type=ASSIMILATOR DUMMY, # which assimilator to chose during DA update phase.
Often further options must be specified using environment
varliables passed to the server to configure the assimilator
further (see additional server env parameter)
cluster=LocalCluster(), # on which cluster to execute, LocalClsuter will run on localhos

5
default: empty. it will try to select the cl

=
n

ter automaticall)

procs server=Z, # server parallelism
procs_runner=3, # model parallelism
n_runners=2) # how many runners

17 /24

Scaling - Propagation
phase only

Q
0

members
e 100

1024

efficiency
[]

0.8-

ll'C 100 1000
members per runner

ParFlow: Neckar catchment (800 m horizontal resolution, changing vertical
resolution, 242 km * 214 km * 100 m, 15 min time steps, assimilation every
12 hours) —» Assimilating 25 obs into 4 M grid cells, model parallelized on 40-48 cores,

Note: scaling efficiency of the full cycle is 0-3% worse since update step 18 /24
s fast (0.1s/15)

Scaling - Propagation
phase only

20000 -

w

E 100000-

=

o

= runners
E ® 100
g A 200
w m 400
E

=

™

=

4000 8000 12000 16000
members

16384 members: 2.9 TiB of Data transfer between runners and server per
assimilation cycle

19/24

e EnKF does not scale
for large ensembles

- use spatially
distributed EnKF here

- 16k case scaling
efficiency counting

full assimilation cycle:

58 % only
 High RAM consumption

Open Challenges:

Members 2,048 4,096 8,192 16,384
Amount of runners 100 200 400 400
Average members per runner 2048 2048 2048 40.96
IServer cores 240 240 240 240
Server nodes 6 12 24 48
Update phase walltime (ms) 5.339 11,872 28,368 52,893
Propagation phase walltime (ms) 41,555 41,757 42,295 83,898
Scaling efficiency during

propagation phase

(reference: walltime | runner 96.03 95.77 96.2 95.76
propagation phase,

not counting server nodes) (%)

Scaling efficiency during

assimilation cycle 85.1 7457 5758 5874

(reference: walltime 1 runner,
not counting server nodes) (%)

20/ 24

I Open Challenges:

° EnKF 16,384
1500 - 400
40.96
= 240
E 48
E 1000- —a—fit: y=ax?+ bx+c 52 803
E —s— mean filter update walltime :
I 83,898
=
500 -
95.76
=
. [} I] i L]
0 250 500 750 1000 58.74
members
288 Observations assimilated into 4M degrees of freedom on 144 JUWELS
cores

21 /24

I Mitigation and future work

* Use faster (e.qg., LEnKF) and less RAM hungry filter update
method

 lterative EnKF calculation starting during propagation
phase already?

* Revisit EnKF parallelization

« Store member states differently (runner local RAM,
NVRAM...)

* Run the server on runner nodes. Load balancing will help.

* Iterative surrogate learning, adaptive ensemble size... ,, .,

C lusi MEllss
onclusion 4. p,
 Framework where member propagation can be on any runner
« Based on multiple components
« Communication between components uses dynamic

connections

 This allows:
- Avoid file I/O

- Fast (avoid startup of new models per propagation)
- Load balance different propagation tasks
- Resilient

- Easy to deploy (different degrees of parallelism, instrument
any model, interchangeable Assimilation Update phase
backends

« Paper: “An elastic framework for ensemble-based large-scale
data assimilation” (hal:
https://hal.archives-ouvertes.fr/hal-03017033v2)

« Current work: Melissa-DA tuned for particle filters with light 23724
weight server

https://hal.archives-ouvertes.fr/hal-03017033v2

I References for the Slides

. Fowler, Alison. “The Ensemble Kalman Filter,” Lecture notes, 20.

. Dorier, Matthieu, Matthieu Dreher, Tom Peterka, Gabriel Antoniu, Bruno Raffin, and Justin M. Wozniak. “Lessons
Learned from Building In Situ Coupling Frameworks,” 2015. https://doi.org/10.1145/2828612.2828622.

. Nerger, L., W. Hiller, and J. Schréter. “PDAF - THE PARALLEL DATA ASSIMILATION FRAMEWORK: EXPERIENCES WITH
KALMAN FILTERING.” In Use of High Performance Computing in Meteorology, 63-83. Reading, UK: WORLD
SCIENTIFIC, 2005. https://doi.org/10.1142/9789812701831_0006.

. Bautista-Gomez, Leonardo, Seiji Tsuboi, Dimitri Komatitsch, Franck Cappello, Naoya Maruyama, and Satoshi
Matsuoka. “FTI: High Performance Fault Tolerance Interface for Hybrid Systems.” In SC '11: Proceedings of 2011
International Conference for High Performance Computing, Networking, Storage and Analysis, 1-12, 2011.
https://doi.org/10.1145/2063384.2063427.

. Théophile Terraz, Personal Communication.
. Bruno Raffin, Personal Communication.

. Terraz, Théophile, Alejandro Ribes, Yvan Fournier, Bertrand looss, and Bruno Raffin. “Melissa: Large Scale In Transit
Sensitivity Analysis Avoiding Intermediate Files,” 1-14, 2017. https://hal.inria.fr/hal-01607479/document.

. Petrie, Ruth Elizabeth. “Localization in the Ensemble Kalman Filter,” n.d., 80.
. https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUWELS/JUWELS node.html, retrieved the 03.09.20.
. http://www.idris.fr/jean-zay/jean-zay-presentation.html, retrieved the 03.09.20.

. Image by University of the Fraser Valley - https://www.flickr.com/photos/ufv/14698165796/, CC BY 2.0,
https://commons.wikimedia.org/w/index.php?curid=54110312

. Anderson, Jeffrey, Tim Hoar, Kevin Raeder, Hui Liu, Nancy Collins, Ryan Torn, and Avelino Avellano. “The Data
Assimilation Research Testbed: A Community Facility.” Bulletin of the American Meteorological Society 90, no. 9
(September 1, 2009): 1283-96. https://doi.org/10.1175/2009BAMS2618.1.

24 /24

https://doi.org/10.1142/9789812701831_0006
https://hal.inria.fr/hal-01607479/document
https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUWELS/JUWELS_node.html
http://www.idris.fr/jean-zay/jean-zay-presentation.html
https://commons.wikimedia.org/w/index.php?curid=54110312

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

