





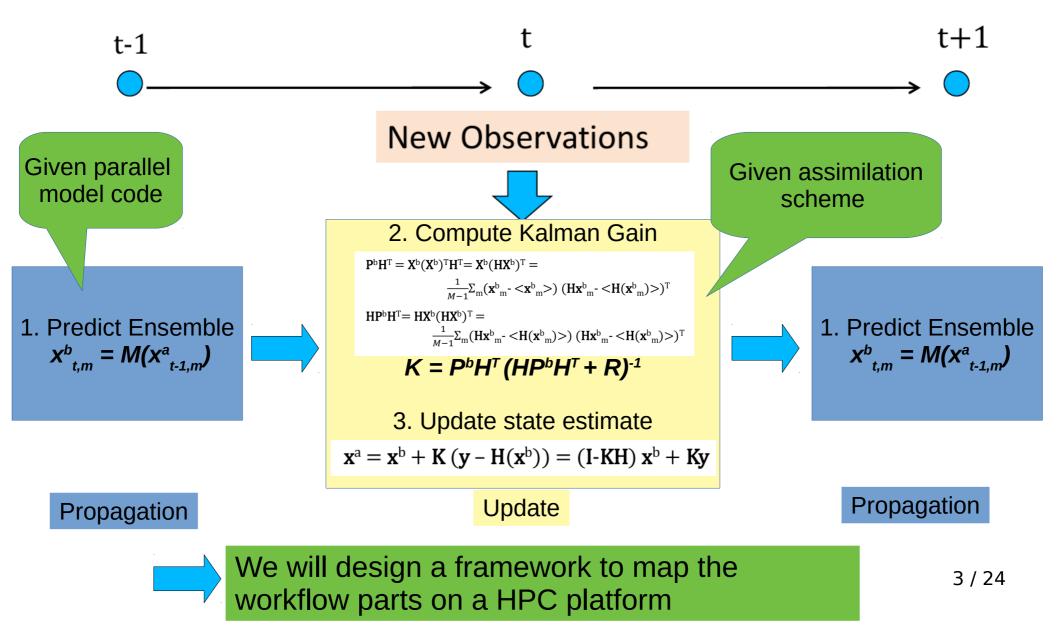
DataMove

Data Aware Large Scale Computing

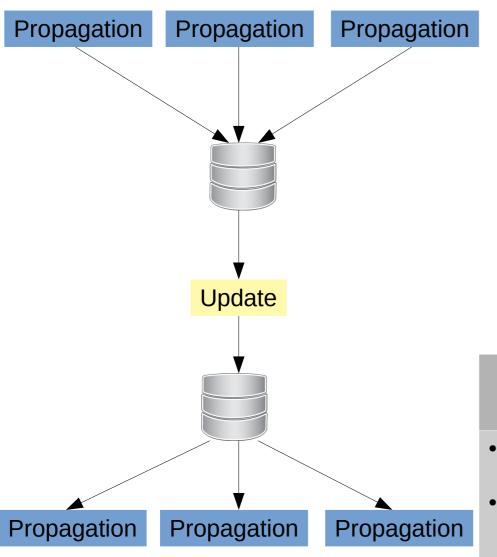


#### A new framework for elastic ensemble-based data assimilation at large-scale

Sebastian Friedemann, Inria


sebastian.friedemann@inria.fr, bruno.raffin@inria.fr

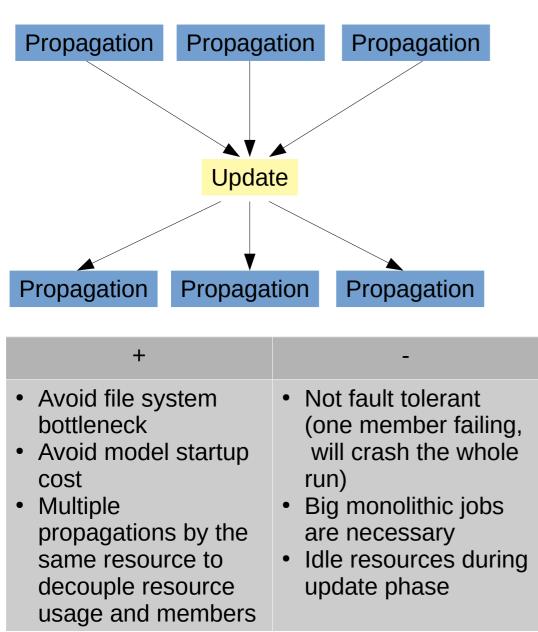
This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 824158 (EoCoE-2). This work was granted access to the HPC resources of IDRIS under the allocation 2020-A8 A0080610366 attributed by GENCI(Grand Equipement National de Calcul Intensif).


#### Motivation

- Data Assimilation (**DA**) for more and more complex models
  - Higher resolution (curse of dimensionality)
  - Account for very *chaotic* situations
  - Some filters need much more members (e.g., Particle Filters)
- Traditional approaches rely on file system or large monolithic jobs that are hard to govern (long wait time, large lost on crash of a single component)
- This motivates a framework that is
  - Fast avoiding startup costs and data transport through the file system
  - Resilient, recovering from faults...
  - Modular
  - Easy to deploy
    - Independence of allocation size from member amount
    - Different degrees of parallelism
- We will assimilate the hydrological model code ParFlow:
  - a physically based, fully coupled water transfer model for the critical zone
  - O(4M) degrees of freedom, 16 000 members, using EnKF

#### DA workflow at the example of Ensemble Kalman Filter (EnKF)

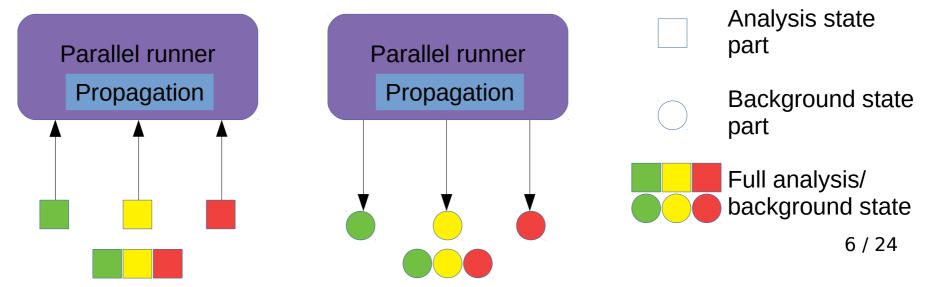



#### **Off-line workflow**



- Members are propagated
- Output is written to disk
- Output is read in
- Filter update is performed
- New model input is written out
- New model input is loaded → next cycle
- EnTK, DART, PDAF, ... support this

| +                                                                                                                | -                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Easily allows different parallelisms</li> <li>Fault tolerant (restart problematic component)</li> </ul> | <ul> <li>Enormous pressure<br/>on the file system<br/>when going large<br/>scale</li> <li>Model startup<br/>overhead many times</li> </ul> |

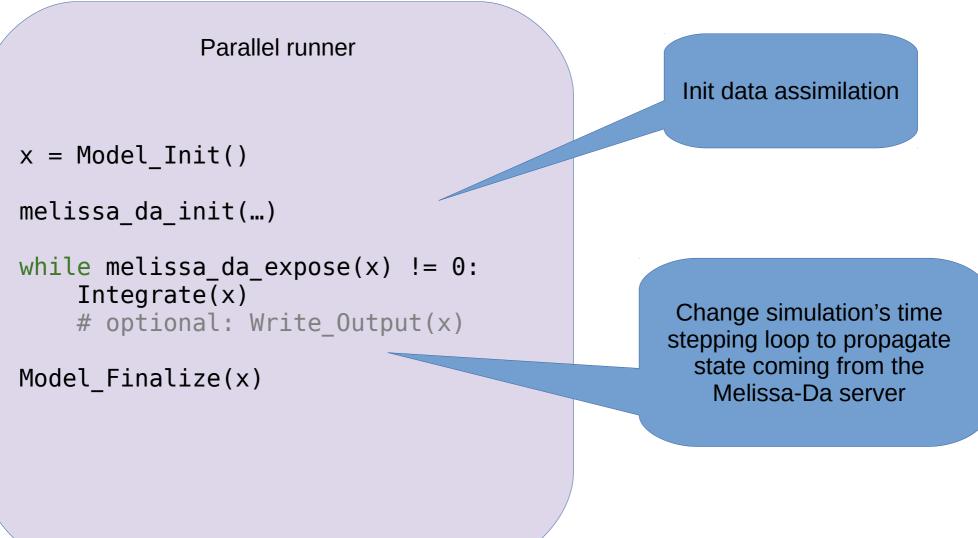

#### **On-line workflow**



- Members are propagated
- Output is gathered on some compute resources (only RAM to RAM copy)
- Filter update is performed on those compute resources
- New model input is scattered back (only RAM to RAM copy)
- Often implemented using MPI (e.g., DART, PDAF)

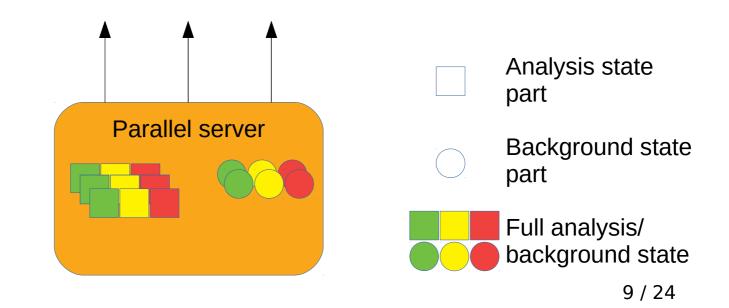
#### Towards a new framework: parallel runners

- Fast avoiding startup costs and data transport through the file system:
  - Transform simulation codes into parallel runners
  - Parallel runners open connections to a central point where they ask for an analysis state to propagate
  - This is parallelized (there is actually one connection per rank transferring state **parts** that need to be assembled to build the full state)
  - Then runners propagate this state and send back the resulting background state



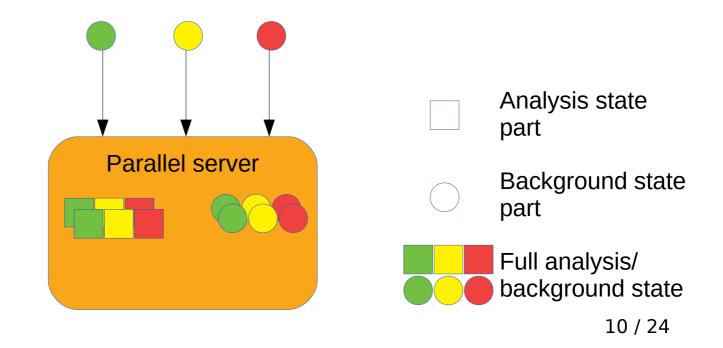

#### In the parallel runner

- x = Model\_Init()
- for t < t\_end: Integrate(x) Write\_Output(x)


Model\_Finalize(x)

#### In the parallel runner

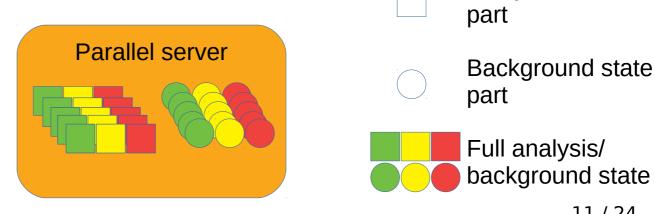



#### The parallel server

• The Parallel server distributes analysis states and receives background states

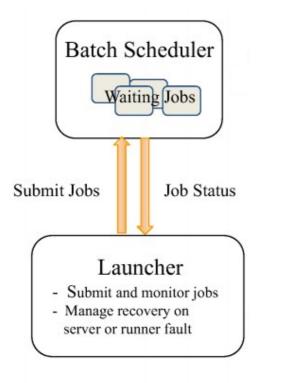


#### The parallel server


• The Parallel server distributes analysis states and receives background states

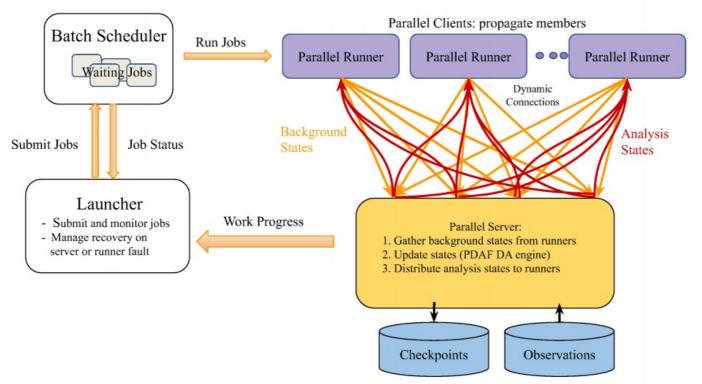


#### **Update Phase**


- The parallel server performs the filter update generating the new set of analysis states
  - It must be provided a function transforming background states into analysis states



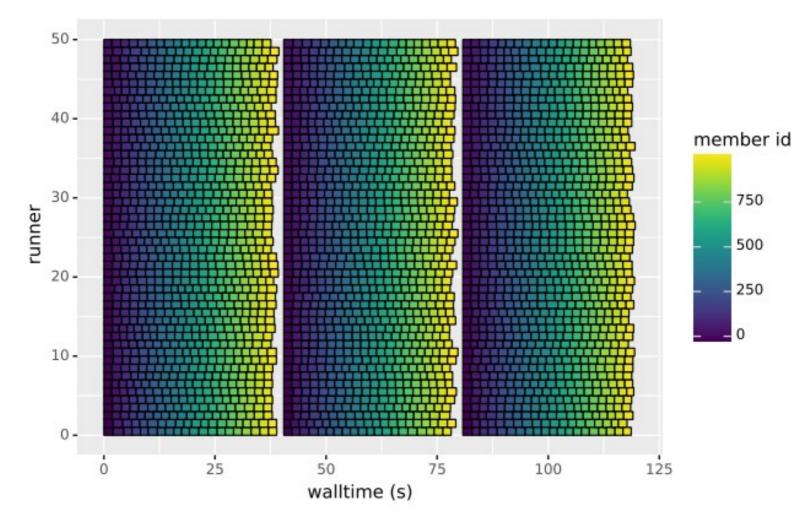



Analysis state

# Deployment using the launcher

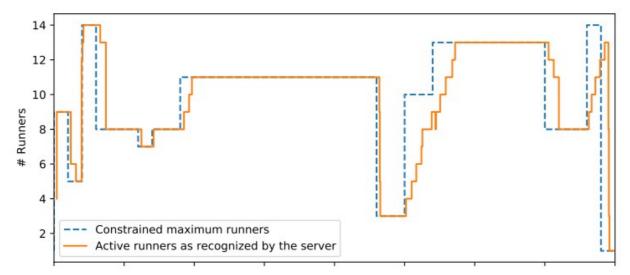


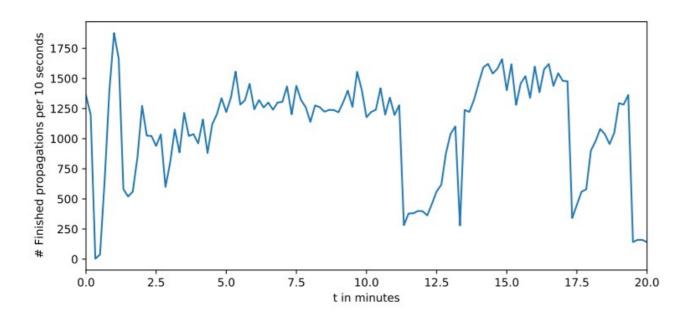
- Launcher starts up components (runner, server) one by one interacting with the batch scheduler
  - Each in its own job allocation
- Launcher also monitors the components restarts on error


## Our Approach: MELISSA-DA



- All connections between components are dynamic (relying on ZeroMQ)
  - Components may join / leave the distributed application at any time
- The launcher takes care to restart components that crashed
- If the server does not receive a full background state in time it will send the according analysis state for propagation to another runner  $^{13\,/\,24}$


#### A typical run of Melissa-DA


Member propagations per runner



- $\rightarrow$  dynamic load balancing
- $\rightarrow$  run on heterogeneous architecture

#### Elasticity, Fault tolerance



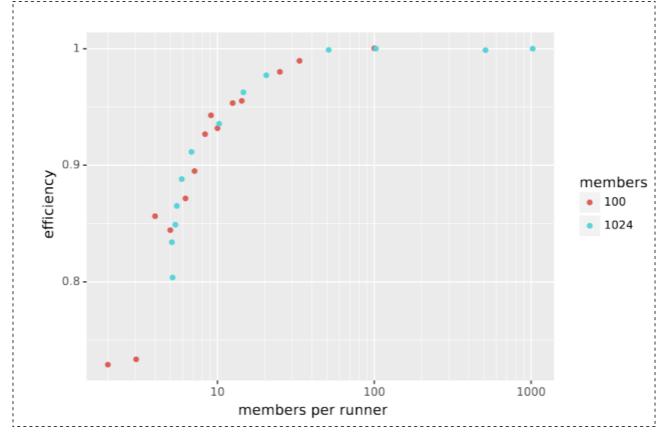


Runner amount constrained, varies → The execution never stops, only its pace changes

### Modularity

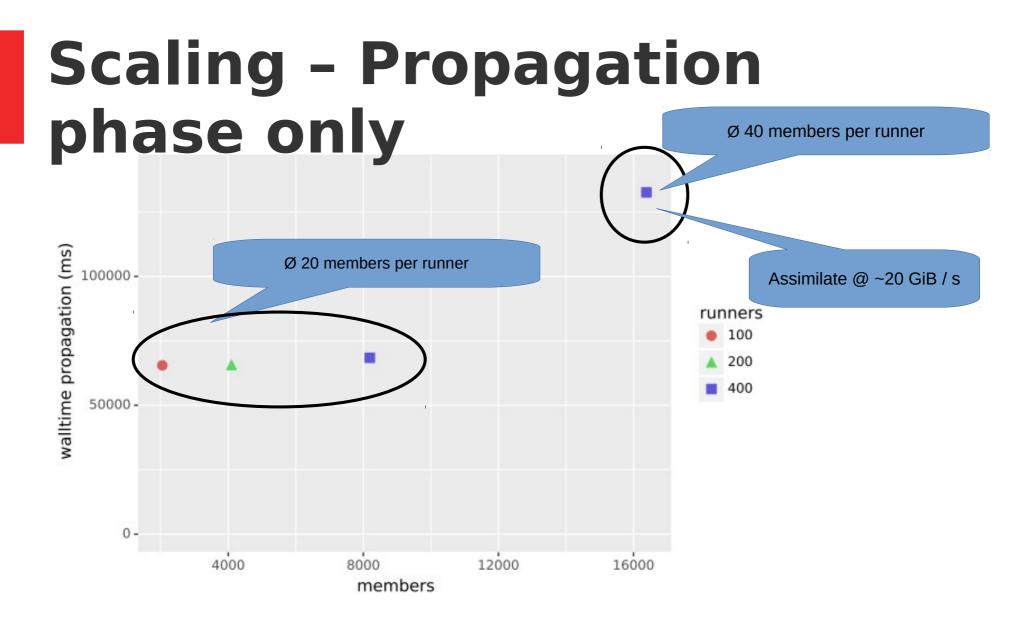


- Modules for different batch scheduler systems (local, Slurm (JUWELS, Jean-Zay, Marenostrum...))
  - can be extended for personal needs
- Any (instrumented) simulation code (*M*) can be coupled with any Assimilation method
  - Necessitates user to provide functions converting data, *H* operator, reading of observations
  - C/C++, Fortran or Python API available
- Assimilation methods are modules too
  - Use existing code (e.g., PDAF) or prototype your own (Python possible)


#### Deployment

#### TLDR - How to run a DA study:

- 1. Install Melissa-DA & dependencies
- 2. Instrument and link your model against Melissa-DA (or use one of the example models to start)
- 3. Configure your assimilator by writing a new assimilator or writing a new pdaf-wrapper library to be preloaded at runtime (or use one of the existing assimilators for the beginning)
- 4. Launch your simulation from within a simple python script:


```
from melissa da study import *
run melissa da study(
        runner cmd='simulation1',
                                               # which model code to use
       total steps=3,
                                                # how many assimilation cycles to run
       ensemble size=3,
                                                # ensemble size
                                                # which assimilator to chose during DA update phase.
        assimilator type=ASSIMILATOR DUMMY,
                                                # Often further options must be specified using environment
                                                # variables passed to the server to configure the assimilator
                                                # further (see additional server env parameter)
                                                # on which cluster to execute, LocalClsuter will run on localhost
        cluster=LocalCluster(),
                                                # default: empty. it will try to select the cluster automatically
                                                # server parallelism
        procs server=2,
                                                # model parallelism
       procs runner=3,
        n runners=2)
                                                # how many runners
```

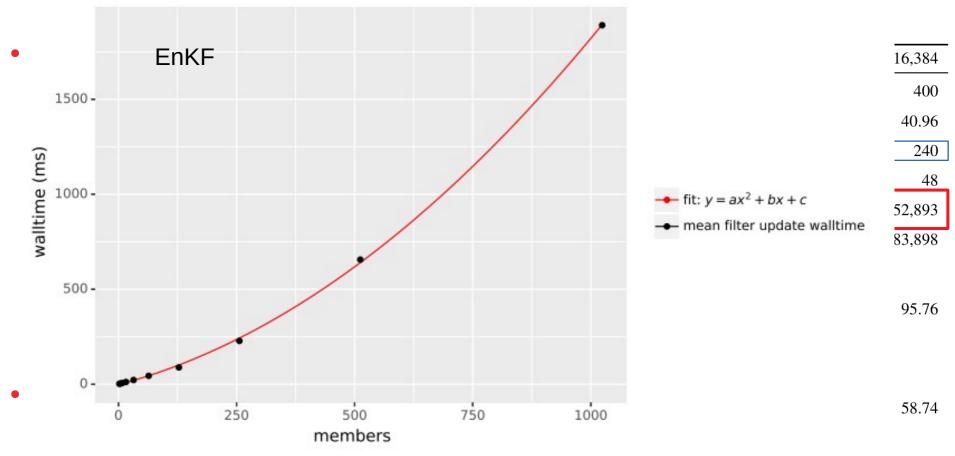
# Scaling - Propagation phase only



ParFlow: Neckar catchment (800 m horizontal resolution, changing vertical resolution, 242 km \* 214 km \* 100 m, 15 min time steps, assimilation every 12 hours) → Assimilating 25 obs into 4 M grid cells, model parallelized on 40-48 cores,

Note: scaling efficiency of the **full cycle is 0-3% worse** since update step 18/24 is fast (0.1 s / 1 s)




**16384 members: 2.9 TiB of Data transfer** between runners and server per assimilation cycle

### **Open Challenges:**

- EnKF does not scale for large ensembles
  - use spatially distributed EnKF here
  - 16k case scaling efficiency counting full assimilation cycle: 58 % only
- High RAM consumption

| Members                                                                                                                                 | 2,048  | 4,096  | 8,192  | 16,384 |
|-----------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|--------|
| Amount of runners                                                                                                                       | 100    | 200    | 400    | 400    |
| Average members per runner                                                                                                              | 20.48  | 20.48  | 20.48  | 40.96  |
| Server cores                                                                                                                            | 240    | 240    | 240    | 240    |
| Server nodes                                                                                                                            | 6      | 12     | 24     | 48     |
| Update phase walltime (ms)                                                                                                              | 5,339  | 11,872 | 28,368 | 52,893 |
| Propagation phase walltime (ms)                                                                                                         | 41,555 | 41,757 | 42,295 | 83,898 |
| Scaling efficiency during<br>propagation phase<br>(reference: walltime 1 runner<br>propagation phase,<br>not counting server nodes) (%) | 96.03  | 95.77  | 96.2   | 95.76  |
| Scaling efficiency during<br>assimilation cycle<br>(reference: walltime 1 runner,<br>not counting server nodes) (%)                     | 85.1   | 74.57  | 57.58  | 58.74  |

#### **Open Challenges:**



288 Observations assimilated into 4M degrees of freedom on 144 JUWELS cores

#### Mitigation and future work

- Use faster (e.g., LEnKF) and less RAM hungry filter update method
- Iterative EnKF calculation starting during propagation phase already?
- Revisit EnKF parallelization
- Store member states differently (runner local RAM, NVRAM...)
- Run the server on runner nodes. Load balancing will help.
- Iterative surrogate learning, adaptive ensemble size... 22/24

#### Conclusion



- Framework where member propagation can be on any runner
- Based on multiple components
- Communication between components uses dynamic connections
- This allows:
  - Avoid file I/O
  - Fast (avoid startup of new models per propagation)
  - Load balance different propagation tasks
  - Resilient
  - Easy to deploy (different degrees of parallelism, instrument any model, interchangeable Assimilation Update phase backends
- Paper: "An elastic framework for ensemble-based large-scale data assimilation" (hal: https://hal.archives-ouvertes.fr/hal-03017033v2)
- Current work: Melissa-DA tuned for particle filters with light <sup>23/24</sup> weight server

#### **References for the Slides**

- Fowler, Alison. "The Ensemble Kalman Filter," Lecture notes, 20.
- Dorier, Matthieu, Matthieu Dreher, Tom Peterka, Gabriel Antoniu, Bruno Raffin, and Justin M. Wozniak. "Lessons Learned from Building In Situ Coupling Frameworks," 2015. https://doi.org/10.1145/2828612.2828622.
- Nerger, L., W. Hiller, and J. Schröter. "PDAF THE PARALLEL DATA ASSIMILATION FRAMEWORK: EXPERIENCES WITH KALMAN FILTERING." In Use of High Performance Computing in Meteorology, 63–83. Reading, UK: WORLD SCIENTIFIC, 2005. https://doi.org/10.1142/9789812701831\_0006.
- Bautista-Gomez, Leonardo, Seiji Tsuboi, Dimitri Komatitsch, Franck Cappello, Naoya Maruyama, and Satoshi Matsuoka. "FTI: High Performance Fault Tolerance Interface for Hybrid Systems." In SC '11: Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, 1–12, 2011. https://doi.org/10.1145/2063384.2063427.
- Théophile Terraz, Personal Communication.
- Bruno Raffin, Personal Communication.
- Terraz, Théophile, Alejandro Ribes, Yvan Fournier, Bertrand looss, and Bruno Raffin. "Melissa: Large Scale In Transit Sensitivity Analysis Avoiding Intermediate Files," 1–14, 2017. https://hal.inria.fr/hal-01607479/document.
- Petrie, Ruth Elizabeth. "Localization in the Ensemble Kalman Filter," n.d., 80.
- https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUWELS/JUWELS\_node.html, retrieved the 03.09.20.
- http://www.idris.fr/jean-zay/jean-zay-presentation.html, retrieved the 03.09.20.
- Image by University of the Fraser Valley https://www.flickr.com/photos/ufv/14698165796/, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=54110312
- Anderson, Jeffrey, Tim Hoar, Kevin Raeder, Hui Liu, Nancy Collins, Ryan Torn, and Avelino Avellano. "The Data Assimilation Research Testbed: A Community Facility." Bulletin of the American Meteorological Society 90, no. 9 (September 1, 2009): 1283–96. https://doi.org/10.1175/2009BAMS2618.1.