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Motivation
● Data Assimilation (DA) for more and more complex models

– Higher resolution (curse of dimensionality)

– Account for very chaotic situations

– Some filters need much more members (e.g., Particle Filters)

● Traditional approaches rely on file system or large monolithic jobs that are hard to 
govern (long wait time, large lost on crash of a single component)

● This motivates a framework that is

– Fast avoiding startup costs and data transport through the file system

– Resilient, recovering from faults...

– Modular

– Easy to deploy

● Independence of allocation size from member amount

● Different degrees of parallelism

● We will assimilate the hydrological model code ParFlow:

– a physically based, fully coupled water transfer model for the critical zone

– O(4M) degrees of freedom, 16 000 members, using EnKF
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DA workflow at the example of 
Ensemble Kalman Filter (EnKF)

1. Predict Ensemble
 xb

t,m
 = M(xa

t-1,m
)

2. Compute Kalman Gain

K = PbHT (HPbHT + R)-1

3. Update state estimate

1. Predict Ensemble
 xb

t,m
 = M(xa

t-1,m
)

Propagation PropagationUpdate

Given parallel 
model code

Given assimilation
scheme 

We will design a framework to map the 
workflow parts on a HPC platform
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Off-line workflow
● Members are propagated

● Output is written to disk

● Output is read in

● Filter update is performed

● New model input is written out

● New model input is loaded → next 
cycle

● EnTK, DART, PDAF, … support this

Propagation

Update

PropagationPropagation

Propagation PropagationPropagation

+ -

● Easily allows different 
parallelisms

● Fault tolerant (restart 
problematic 
component)

● Enormous pressure 
on the file system 
when going large 
scale

● Model startup 
overhead many times
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On-line workflow
● Members are propagated

● Output is gathered on some 
compute resources (only RAM to 
RAM copy)

● Filter update is performed on 
those compute resources

● New model input is scattered 
back (only RAM to RAM copy)

● Often implemented using MPI 
(e.g., DART, PDAF)

Propagation

Update

PropagationPropagation

Propagation PropagationPropagation

+ -

● Avoid file system 
bottleneck

● Avoid model startup 
cost

● Multiple 
propagations by the 
same resource to 
decouple resource 
usage and members

● Not fault tolerant 
(one member failing, 
 will crash the whole 
run)

● Big monolithic jobs 
are necessary

● Idle resources during 
update phase 



  6 / 24

Towards a new framework: 
parallel runners

● Fast avoiding startup costs and data transport through the file system:

– Transform simulation codes into parallel runners

– Parallel runners open connections to a central point where they ask for an 
analysis state to propagate

– This is parallelized (there is actually one connection per rank transferring 
state parts that need to be assembled to build the full state)

– Then runners propagate this state and send back the resulting background 
state

Parallel runner

Propagation

Parallel runner

Propagation

Analysis state 
part

Background state 
part

Full analysis/ 
background state
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In the parallel runner

x = Model_Init()

for t < t_end:
    Integrate(x)
    Write_Output(x)

Model_Finalize(x)



  8 / 24

In the parallel runner

Parallel runner

x = Model_Init()

melissa_da_init(…)

while melissa_da_expose(x) != 0:
    Integrate(x)
    # optional: Write_Output(x)

Model_Finalize(x)

Init data assimilation

Change simulation’s time 
stepping loop to propagate 

state coming from the 
Melissa-Da server 
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● The Parallel server distributes analysis states 
and receives background states

Parallel server

The parallel server

Analysis state 
part

Background state 
part

Full analysis/ 
background state
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● The Parallel server distributes analysis states 
and receives background states

Parallel server

The parallel server

Analysis state 
part

Background state 
part

Full analysis/ 
background state
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Update Phase

● The parallel server performs the filter update 
generating the new set of analysis states

– It must be provided a function 
transforming background states into 
analysis states 

Parallel server

Analysis state 
part

Background state 
part

Full analysis/ 
background state
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Deployment using the 
launcher

● Launcher starts up 
components (runner, 
server) one by one 
interacting with the batch 
scheduler

– Each in its own job 
allocation

● Launcher also monitors 
the components restarts 
on error
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Our Approach: -DA

● All connections between components are dynamic (relying on ZeroMQ)

– Components may join / leave the distributed application at any 
time

● The launcher takes care to restart components that crashed

● If the server does not receive a full background state in time it will 
send the according analysis state for propagation to another runner
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A typical run of Melissa-DA
Member propagations per runner

→ dynamic load balancing
→ run on heterogeneous architecture
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Elasticity, Fault tolerance

Runner amount 
constrained, varies
→ The execution never 
stops, only its pace 
changes
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Modularity

● Modules for different batch scheduler systems (local, 
Slurm (JUWELS, Jean-Zay, Marenostrum…) )

– can be extended for personal needs
● Any (instrumented) simulation code (M) can be 

coupled with any Assimilation method

– Necessitates user to provide functions converting 
data, H operator, reading of observations

– C/C++, Fortran or Python API available
● Assimilation methods are modules too

– Use existing code (e.g., PDAF) or prototype your 
own (Python possible)
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Deployment
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Scaling – Propagation 
phase only

ParFlow: Neckar catchment (800 m horizontal resolution, changing vertical 
resolution, 242 km * 214 km * 100 m, 15 min time steps, assimilation every 
12 hours)    → Assimilating 25 obs into 4 M grid cells, model parallelized on 40-48 cores,

Note: scaling efficiency of the full cycle is 0-3% worse since update step 
is fast (0.1 s / 1 s)
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Ø 40 members per runner

Assimilate @ ~20 GiB / s

Scaling – Propagation 
phase only

Ø 20 members per runner

16384 members: 2.9 TiB of Data transfer between runners and server per 
assimilation cycle
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Open Challenges:

● EnKF does not scale 

for large ensembles

– use spatially 
distributed EnKF here

– 16k case scaling 
efficiency counting 
full assimilation cycle: 
58 % only

● High RAM consumption
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Open Challenges:

● EnKF does not scale 

for large ensembles

– use spatially 
distributed EnKF here

– 16k case scaling 
efficiency counting 
full assimilation cycle: 
58 % only

● High RAM consumption

288 Observations assimilated into 4M degrees of freedom on 144 JUWELS 
cores

EnKF
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Mitigation and future work

● Use faster (e.g., LEnKF) and less RAM hungry filter update 
method

● Iterative EnKF calculation starting during propagation 
phase already?

● Revisit EnKF parallelization

● Store member states differently (runner local RAM, 
NVRAM…)

● Run the server on runner nodes. Load balancing will help.

● Iterative surrogate learning, adaptive ensemble size...
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Conclusion
● Framework where member propagation can be on any runner
● Based on multiple components
● Communication between components uses dynamic 

connections
● This allows:

– Avoid file I/O

– Fast (avoid startup of new models per propagation)

– Load balance different propagation tasks

– Resilient

– Easy to deploy (different degrees of parallelism, instrument 
any model, interchangeable Assimilation Update phase 
backends

● Paper: “An elastic framework for ensemble-based large-scale 
data assimilation“ (hal: 
https://hal.archives-ouvertes.fr/hal-03017033v2)

● Current work: Melissa-DA tuned for particle filters with light 
weight server

- DA

https://hal.archives-ouvertes.fr/hal-03017033v2
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