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GDP change (%) 2020 In 2020 the COVID-19 pandemic produce profound impacts worldwide (millions of infected, 
thousands of deaths, stress and collapse of health systems, long lockdowns, job losses, GDP 
falls, mobility constraints, among many others).

Currently South America is struggling with second/third waves of infection, with a percentage of 
vaccinated population which is still not enough to prevent these waves and their impact upon 
the society. 

In this work we aim to use a simple epidemiological model and data assimilation 
techniques to provide a monitoring of epidemiological parameters as well as short range 
forecasts of the spread of the disease.
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Previous works implemented DA for epidemiological models of diseases like influenza (e.g. Pei et al. 2018, Shaman et al., 2013, 
Hickmann et al. 2015) and other diseases (e.g. Passeto et al. 2017). Similar approaches has been applied to spread of COVID-19 
(e.g. Evensen et al. 2021, Li et al. 2020, Ghostine et al. 2021). 

Most works consider homogeneous populations which do not allow to investigate how different population groups interact with each 
other. Splitting the population into different groups by regions, ages, etc allows to investigate more complex effects like the impact of 
particular activities (e.g. schools) or the impact of strategies like selective lockdowns. Evensen et al. 2021 uses a priori knowledge 
of interactions among different age groups, Pei et al. 2018 the impact of the interactions among different regions.

We investigate how the interaction from different age groups can be obtained from the data using joint state and 
parameter estimation techniques. 



Model description: Compartmental SEIRD model

S: susceptibles,  E: exposed, I: infected

         are the components of the contact - infection matrix. They depend 
upon the number of interactions of people within each group and among 
different groups as well as on the probability of infection (which depends on 
the disease). 

           are time scales for the transition from E to I and from I either to mild 
or severe infections. 



Model description: Compartimental SEIRD model

The timescales           introduce a time lag between the time of the 
infection and time at which infections are detected (observed). 

Previous works mostly uses filter approaches for estimating the 
parameters. Evensen et al. (2021) introduces a smoother approach to deal 
with this issue.  

Another goal of this work is to compare the performance of the 
filtering approach and the smoother with different time-scales in 
estimating a time-dependent contact matrix.  



Joint state-parameter estimation methods
We use two different joint state and parameter estimation techniques:

● Ensemble Kalman filter (EnKF)
● Ensemble Smoother with Multiple Data Assimilation (ESMDA)



State augmentation in the Ensemble Kalman filter:

In this case we implement a sequential Ensemble Transform Kalman Filter (ETKF) including the state variables 
(S,E,I,R and D) and the parameters required to estimate the contact matrix. 

On each time step, we are approximately solving based on the Kalman filter hypothesis: 

Initial state and parameter ensembles (at k=0) are sampled from Gaussian distributions with known mean and 
standard deviation. 

The filter assimilates observations at a daily frequency (which is the frequency at which observations are 
usually available). 

A random walk is used as a dynamical model for the parameters. The random walk avoids the collapse of the 
filter acting in a similar way as additive inflation in the parameter space. 

No additional inflation is performed on the parameters or state variables. 



This is a smoother approach similar to the one used in Evensen et al. 2021, in which longer assimilation windows 
can be considered. At the end the time dependent parameters as well as the state variables at the beginning of 
the window are recovered.

The solution is approximated with a tempered (iterative) localized Kalman smoother approach, 
On each iteration we solve

This step is solved using a time-localized 4D-Ensemble Transform Kalman Smoother (4D-LETKS) and 
assuming: 

Note that this method uses the model as a strong constraint. The evolution of the state variables within the 
assimilation window is determined by the state at the beginning of the window and the estimated parameters.

The prior for the model parameters is set through a random walk with known correlation and noise. The 𝞬 
coefficients increases exponentially (the first iteration steps assimilates a smaller fraction of the information 
contained in the observations).  

Ensemble Smoother with Multiple Data Assimilations (Evensen et al. 2021)



Estimated parameters
We assume that the contact-infection matrix is unknown and time dependent. We also split the population into 
3 age groups. We tested approaches to model the time dependent contact matrix:

Full C
We estimate a total of 6 time-dependent parameters which are the maximum degrees 
of freedom of a contact matrix for 3 age groups (assuming that the probability of 
infection is the same for all the groups).

Diagonal C
We consider a diagonal C meaning that there are no interaction among groups. In this 
case we estimate 3 time-dependent parameters corresponding to the effective 
reproductive numbers for each group. 

Well mixed C
The structure of C is fixed in time and represents a “well mixed” population in which the 
number of contacts among different groups depends on their population. The total 
quantity of contacts is modulated by 1 time-dependent parameter. 

“A priori” C
In this case we assume that the structure of C is known a priori, is different from the 
well-mixed distribution and is constant in time. The number of contacts is modulated by 
a 1 time-dependent parameter as in Evensen et al. (2021).



Experiments with simulated observations

We performed experiments using simulated observations in a twin model settings to 
evaluate the identifiability of the parameters and the performance of the different 
techniques. 
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● True contact matrix is constant in time. 

● We consider 3 age groups ( [0-30], [30-65] and [65-] ) with 1.0e6 people each. 

● Observations are generated adding Gaussian random noise to the model states. The observation error 
variance is a function of the number of daily infections.

● Only observations of the total number of infected population are assimilated in these experiments. 

The nature run - constant contact matrix experiment



Parameter estimation experiments: Contact matrix parametrization

We perform a set of 4 experiments using the 4 contact matrix parametrization approaches:
● Full C
● Diagonal C
● Well mixed
● A priori C

For this set of experiments we use the EnKF:

● Daily observations of total infected people for each age group. Observation error standard deviation equal 
to 5% of the true value. 

● 500 ensemble members. 

● Contact matrix parameters randomly initialized.

● Total assimilation period 200 days. 

● All the experiments has been repeated 10 times changing the realization of the observation error and the 
initial values for the parameters. 



Parameter estimation experiments: Contact matrix parametrization

● The full matrix estimation experiment captures the 
main properties of the true contact matrix.

● The full matrix experiment exhibits the largest 
variability among experiment suggesting that the 
parameters are less identifiable. 

● During the period of exponential growth the 
elements of the Diag parametrization converge to 
the same value. 

● The “a priori” estimation is (as expected) the 
closest to the true parameters. 



Parameter estimation experiments: Contact matrix parametrization

Full and Diag. parametrizations better capture the distribution of infected people among the different age groups. 
Although the a priori estimation is close to the true contact matrix, the distribution of infected people among the 
different groups is biased (this is much worse in the case of the well mixed parametrization). We believe this bias 
is a consequence of a wrong specification of the leading eigenvector. 

All the parametrizations did a good job in 
estimating the effective reproductive number 
(maximum eigenvalue of the NGM). 
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Parameter estimation experiments: Contact matrix parametrization

● Forecast produced by Full estimation are the best, followed closely by the a priori and Diag. 
parameterizations. The well mixed case produce a much worse forecast.

● Differences among parameterizations are larger after the maximum of infections is reached. Probably 
because in this part the orientation of the infection vector changes faster.  Also differences among the 
parametrizations are larger for Age 0 and 2 since are the ones most affected by off-diagonal interactions. 



Parameter estimation experiments: Contact matrix parametrization

● The full parametrization is the one that better captures the changes in the distribution of the infection among different 
groups during the forecast. The advantage is clearer during periods of rapid change in this distribution.

● While diag can synchronize this distribution based on the observation, it fails to predict future changes in this 
distributions probably due to not considering inter group interactions (off-diagonal terms of the contact matrix). 

● The a priori specification produces a good forecast but with an initial bias in how infections are distributed among 
different groups. 

Age 0 Age 1 Age 2 



Parameter estimation experiments: Parameter estimation techniques

We perform a set of 3 experiments using 3 different data assimilation techniques:
● EnKF (as in the previous experiments)
● ESMDA with 200 day window.
● ESMDA with 14 day window. 

For this set of experiments we use:

● Daily observations of total infected people for each age group. Observation error standard deviation equal 
to 5% of the true value. 

● 500 ensemble members. 

● Contact matrix parameters randomly initialized and a Full matrix parametrization.

● 50 iterations in the ESMDA. Also LETKS is implemented with a 24 days localization in both cases.   

● All the experiments has been repeated 10 times changing the realization of the observation error and the 
initial values for the parameters. 



Parameter estimation experiments: Parameter estimation techniques

● ESMDA(w200) produces estimation with larger inter-experiment spread. For this long windows the problem 
becomes highly non-linear which may degrade the estimation of the parameters.  

● Differences between EnKF and ESMDA(w14) are small in terms of the estimated parameters. 



Parameter estimation experiments: Parameter estimation techniques

Age 0 Age 1 Age 2
● The forecast error maximizes 

immediately before the peak.

● The ensemble spread is 
higher than the error, 
particularly for the EnKF.

● ESMDA(w200 and 14) 
performs better than the 
EnKF. This is probably due to 
the use of future observations. 

● All the estimation schemes 
properly reproduce the 
evolution of the distribution of 
infection among the different 
groups (with a slight 
advantage of ESMDA with 14 
days window).



Real case experiments

We performed experiments using data from the city of Buenos Aires in the period 
March 2019 - May 2021. 



Real case experiment: 
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Real time observations of detected 
infections at the city of Buenos Aires 
between March 2020 to May 2021.

There are three main waves:

● The first and slowly developing wave 
during a long lock-down started on 
March 2020. 

● A second wave during Christmas-New 
year holidays.

● A third rapid wave starting on March 
2021 (still ongoing). 



Parameter estimation experiments: Contact matrix parametrization

● All parametrizations capture the time variability of the parameters leading to the three distinct waves 
identified in the data.

● There is a good convergence to the parameters as indicated by the low spread among different realizations.
● The Full parametrization differs from the well-mixed scenario and identifies contacts in Age group 1 as the 

most significant source of growth (larger number of intra-group interactions). 
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Parameter estimation experiments: Contact matrix parametrization

● Largest errors in the 
forecast are associated with 
local maxima. Particularly on 
the second and third 
outbreaks when a sharp 
change in the contact 
parameters is observed. 

● All parametrizations of the 
contact matrix perform well 
in this scenario, with a small 
advantage of the “a priori” 
parametrization. 

● From the perspective of the 
cases distributed among 
different groups, the Full 
and Diag. parametrizations 
provide the best results. 



Parameter estimation experiments: Assimilation techniques

● Broadly speaking the estimated parameters by the different techniques are similar. Also the structure of the 
time average contact matrix is quite similar. 

● The local maximum in the diagonal components of the contact matrix tends to occur earlier in the ESMDA 
(w200) and ESMDA (w14) which is probably a consequence of using “future observations”. 

● ESMDA (w14) produces better forecasts than the EnKF for the three age groups.   



Summary:

● We propose and evaluate  four different parameterizations to represent age population inhomogeneity in a metapopulation 
SEIRD model.

● Parametrizations considering the inhomogeneity perform better than the “well mixed” assumption in both OSSE and real data 
experiments. The estimation of the full contact matrix produces better forecasts under OSSE experiments but shows no clear 
advantage in the real data experiment. In the real case experiment biases can result from the different detection rate 
associated to different age groups. 

● We compare the EnKF and the ESMDA with two different window lengths. These two techniques perform well in the retrieval 
of the state and time-dependent model parameters.  

● The ESMDA with a 14 day window outperforms the EnKF forecasts in both the OSSE and real data experiments. We believe 
this is mainly because ESMDA can handle the time lag between the parameter sensitivity and the observations. Also using 
the model as a strong constraint can be contributing to a better parameter estimation.   

Possible future directions:

● Evaluate the estimation of contact matrices representing the interaction among different regions and study how the 
optimization of multi-region models helps to forecast the evolution of the outbreaks. 

● Optimize the stochastic hyper-parameters of the model (e.g. characteristics of the random walk parameters) in order to better 
quantify the uncertainty. 

● Include additional parameters of the coupling of epidemiological parameters with external forcings (e.g. weather conditions). 



Operational COVID-19 monitoring using data assimilation

http://covid19.unne.edu.ar
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The nature run - constant contact matrix experiment

The maximum eigenvalue of the NGM can be associated with the time-dependent effective reproductive number (i.e. how 
many new infections starts from an infected person in a time period equal to τI ). If this number is greater than one, then 
the number of infected people will grow exponentially. 

The leading eigenvector is also an interesting property, showing how infections will be distributed among different groups. 

We computed the next generation matrix (NGM) for the compartimental SEIRD model following Heffernan et al. 
2005.



Parameter estimation experiments: Parameter estimation techniques

● The three techniques provide a good representation of the number of active infections and its distribution 
among the different age groups, they also accurately capture changes in the reproductive number.  

● ESMDA(w14) is slightly more accurate than EnKF and ESMDA(w200).


