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• Model variables: 𝑚

• Linear/nonlinear forward 
simulator (or observation 
operators): 𝑔

• Observations: 𝑑𝑜

Ensemble data assimilation as a stochastic nonlinear-

least-squares (NLS) problem



Stochastic EnKF (SEnKF), ensemble smoother (ES) or iterative ES (IES) can be derived by 
solving the following stochastic NLS problem*:

𝑎𝑟𝑔𝑚𝑖𝑛
𝑚𝑗
𝑎

1

𝑁𝑒


𝑗

𝐿 𝑚𝑗
𝑎|𝑑𝑗

𝑜, 𝑚𝑗
𝑏 , 𝛾 , 𝑗 = 1, 2,… ,𝑁𝑒

𝐿 𝑚𝑎|𝑑𝑜, 𝑚𝑏 , 𝛾 =
1

2
𝑑𝑜 − 𝑔 𝑚𝑎

𝑇
𝐶𝑑
−1 𝑑𝑜 − 𝑔 𝑚𝑎 +

𝛾

2
𝑚𝑎 −𝑚𝑏 𝑇

𝐶𝑚
−1(𝑚𝑎 −𝑚𝑏)

*Luo, X. et al. (2015). Iterative Ensemble Smoother as an Approximate Solution to a Regularized Minimum-Average-Cost 
Problem: Theory and Applications. SPE Journal, vol. 20, 962-982

Ensemble data assimilation as a stochastic nonlinear-

least-squares (NLS) problem

Our focus here is on IES for inverse problems (e.g., reservoir data assimilation problems)  



mj
a = 𝑚𝑗

b + 𝑆𝑚𝑆𝑔 𝑆𝑔𝑆𝑔
𝑇 + 𝛾𝐶𝑑

−1
𝑑𝑗
𝑜 − 𝑔 𝑚𝑗

𝑏 , 𝑗 = 1,2,… ,𝑁𝑒

𝑆𝑚 ≡
1

𝑁𝑒 − 1
𝑚1

𝑏 − ഥ𝑚𝑏 , 𝑚2
𝑏 − ഥ𝑚𝑏, … ,𝑚𝑁𝑒

𝑏 − ഥ𝑚𝑏 ; ഥ𝑚𝑏 =
1

𝑁𝑒


𝑗

𝑚𝑗
𝑏;

𝑆𝑔 ≡
1

𝑁𝑒 − 1
𝑔 𝑚1

𝑏 − 𝑔 ഥ𝑚𝑏 , 𝑔 𝑚2
𝑏 − 𝑔 ഥ𝑚𝑏 , … , 𝑔 𝑚𝑁𝑒

𝑏 − 𝑔 ഥ𝑚𝑏 ;

= 𝑚𝑗
b + 𝑆𝑚 𝑆𝑔

𝑇𝐶𝑑
−1𝑆𝑔 + 𝛾𝐼

−1
𝑆𝑔
𝑇𝐶𝑑

−1 𝑑𝑗
𝑜 − 𝑔 𝑚𝑗

𝑏

Ensemble data assimilation as a stochastic nonlinear-

least-squares (NLS) problem

Original IES update formula



𝑎𝑟𝑔𝑚𝑖𝑛
𝑚𝑗
𝑎

1

𝑁𝑒


𝑗

𝐿 𝑚𝑗
𝑎|𝑑𝑗

𝑜, 𝑚𝑗
𝑏 , 𝛾 , 𝑗 = 1, 2,… ,𝑁𝑒

𝐿 𝑚𝑎|𝑑𝑜, 𝑚𝑏 , 𝛾 = 𝐷[Γ 𝑑𝑜 − Γ 𝑔 𝑚𝑎 ] + 𝛾𝑅[Φ 𝑚𝑎 −Φ(𝑚𝑏)]

Ensemble data assimilation beyond NLS problems

𝑳 𝒎𝒂|𝒅𝒐,𝒎𝒃, 𝜸 in general beyond the form of NLS



𝐿 𝑚𝑎|𝑑𝑜, 𝑚𝑏, 𝛾 = 𝐷[Γ 𝑑𝑜 − Γ(𝑔 𝑚𝑎 )] + 𝛾𝑅[Φ 𝑚𝑎 −Φ(𝑚𝑏)]

where

➢𝐷 is a distance metric for the data mismatch term

➢Γ is a certain transform operator in the data space

➢R is a distance metric for the regularization term

➢Φ is another transform operator in the model space

When 

➢ Γ and Φ are identity operator, 

➢ 𝐷 𝑥 =
1

2
𝑥𝑇𝐶𝑑

−1𝑥

➢ and 𝑅(𝑥) =
1

2
𝑥𝑇𝐶𝑚

−1𝑥, with 𝐶𝑚 = 𝑆𝑚𝑆𝑚
𝑇

then we recover the conventional cost function

𝐿 𝑚𝑎|𝑑𝑜, 𝑚𝑏 , 𝛾 =
1

2
𝑑𝑜 − 𝑔 𝑚𝑎

𝑇

𝐶𝑑
−1 𝑑𝑜 − 𝑔 𝑚𝑎 +

𝛾

2
𝑚𝑎 −𝑚𝑏 𝑇

𝐶𝑚
−1(𝑚𝑎 −𝑚𝑏)

Ensemble data assimilation beyond NLS problems



mj
a = 𝑚𝑗

b + 𝑆𝑚 𝑀𝐷 ഥ𝑚𝑏 + 𝛾𝑀𝑅 𝑚𝑗
b, ഥ𝑚𝑏

−1
𝑆Γ∘𝑔
𝑇 ∇𝐷[Γ 𝑑𝑜 − Γ(𝑔 𝑚𝑗

𝑏 )]

where

➢ 𝑆O ≡
1

𝑁𝑒−1
O 𝑚1

𝑏 − O ഥ𝑚𝑏 , O 𝑚2
𝑏 − O ഥ𝑚𝑏 , … , O 𝑚𝑁𝑒

𝑏 − O ഥ𝑚𝑏 for a generic operator 𝑂

➢ ∇𝑓[𝑥0] ≡
𝜕𝑓 𝑥

𝑥
|𝑥0 standing for the gradient of a generic function 𝑓 evaluated at 𝑥0

➢ ∇𝑓
2[𝑥0] =

𝜕2𝑓

𝜕𝑥2

𝑇

|𝑥0 for the Hessian of 𝑓 evaluated at 𝑥0

➢𝑀𝐷 ഥ𝑚𝑏 ≡ 𝑆Γ∘g
𝑇 ∇𝐷

2 Γ 𝑑𝑜 − Γ(g ഥ𝑚𝑏 ) 𝑆Γ∘g, with Γ ∘ g x ≡ Γ(𝑔(𝑥))

➢𝑀𝑅 𝑚𝑗
b, ഥ𝑚𝑏 ≡ 𝑆Φ

𝑇∇𝑅
2 Φ ഥ𝑚𝑏 −Φ 𝑚𝑗

b 𝑆Φ

Ensemble data assimilation beyond NLS problems

Generalized IES (GIES) update formula: the umbrella algorithm*

*Luo, X. (2021). Novel iterative ensemble smoothers derived from a class of generalized cost functions. Computational 
Geosciences, 25(3), 1159-1189.



Correspondence between the update formulae 

of IES and GIES 

IES GIES

mj
a = 𝑚𝑗

b + 𝑆𝑚 𝑆𝑔
𝑇𝐶𝑑

−1𝑆𝑔 + 𝛾𝐼
−1
𝑆𝑔
𝑇𝐶𝑑

−1 𝑑𝑜 − 𝑔 𝑚𝑗
𝑏

mj
a = 𝑚𝑗

b + 𝑆𝑚 𝑀𝐷 ഥ𝑚𝑏 + 𝛾𝑀𝑅 𝑚𝑗
b, ഥ𝑚𝑏

−1
𝑆Γ∘𝑔
𝑇 ∇𝐷[Γ 𝑑𝑜 − Γ(𝑔 𝑚𝑗

𝑏 )]
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ℓ𝑝
𝑞
-GIES as a class of offspring algorithms

𝐿 𝑚𝑎|𝑑𝑜, 𝑚𝑏 , 𝛾 =
1

2
𝑑𝑜 − 𝑔 𝑚𝑎

𝑇

𝐶𝑑
−1 𝑑𝑜 − 𝑔 𝑚𝑎 +

𝛾

2
𝑅[Φ 𝑚𝑎 −Φ(𝑚𝑏)]

𝑅[Φ 𝑚𝑎 −Φ(𝑚𝑏)] = σ𝑖=1
𝐾 𝑤𝑖 ‖𝐁𝑖(Φ𝑖 𝑚

𝑎 −Φ𝑖(𝑚
𝑏))‖𝑝𝑖

𝑞𝑖 , 𝑝𝑖/𝑞𝑖 ∈ 𝑅+

• 𝑤𝑖/𝐁𝑖/ Φ𝑖: mixture coefficient/weight matrix/transform operator for the 𝑖-th regularization term

• For 𝐁 ∈ 𝑹𝑚𝑏×𝑚𝑥 , 𝒙 ∈ 𝑅𝑚𝑥, the ℓ𝑝
𝑞

metric of the vector 𝐁𝒙 ∈ 𝑅𝑚𝑏 defined as

𝐁𝒙 𝑝
𝑞
≡ σ𝑒=1

𝑚𝑏 𝐁𝒙 𝑒
𝑝

𝑞

𝑝

𝐁𝒙 𝑒 = σ𝑓=1
𝑚𝑥 𝐵𝑒,𝑓 𝑥𝑓 the e-th element of 𝐁𝒙,  𝐵𝑒,𝑓/𝑥𝑓 elements of 𝐁/𝒙



𝑅[Φ 𝑚𝑎 −Φ(𝑚𝑏)]

=
1

2


𝑖=1

𝐾

𝑤𝑖‖𝐁𝑖(Φ𝑖 𝑚
𝑎 −Φ𝑖(𝑚

𝑏))‖𝑝𝑖
𝑞𝑖

𝑀𝑅 𝑚𝑗
b, ഥ𝑚𝑏 =

1

2
σ𝑖=1
𝐾 𝑤𝑖𝑆Φ𝑖

𝑇 ∇
‖𝐁𝑖(∙)‖𝑝𝑖

𝑞𝑖
2 Φ𝑖 ഥ𝑚𝑏 −Φ𝑖 𝑚𝑗

b 𝑆Φ𝑖

∇
‖𝐁𝑖(∙)‖𝑝𝑖

𝑞𝑖
2 Φ𝑖 ഥ𝑚𝑏 −Φ𝑖 𝑚𝑗

b = 

𝑞𝑖(𝑞𝑖-𝑝𝑖) ‖𝐁𝑖(Φ𝑖 ഥ𝑚𝑏 −Φ𝑖(𝑚
𝑏))‖𝑝𝑖

𝑞𝑖−2𝑝𝑖 𝐁𝑖
T𝒂𝑖𝒂𝑖

T𝐁𝑖 + 

𝑞𝑖(𝑝𝑖-1) ‖𝐁𝑖(Φ𝑖 ഥ𝑚𝑏 −Φ𝑖(𝑚
𝑏))‖𝑝𝑖

𝑞𝑖−𝑝𝑖 𝐁𝑖 ⊙𝑪𝑖
T(𝐁𝑖 ⊙𝑪𝑖);

𝒂𝑖 ≡ 𝐁𝑖 Φ𝑖 ഥ𝑚𝑏 −Φ𝑖(𝑚
𝑏 ቚ

ሶ̂ (𝒑𝒊−𝟐)
⊙ (𝐁𝑖(Φ𝑖 ഥ𝑚𝑏 −Φ𝑖(𝑚

𝑏)))

𝑪𝑖 ≡ 𝐁𝑖 Φ𝑖 ഥ𝑚𝑏 −Φ𝑖(𝑚
𝑏 | ሶ̂ (𝒑𝒊/𝟐−𝟏) 𝟏T

Notations ⊙: Schur (or element-wise ) product; 
ሶ̂ : Raising all elements of a vector to a certain power

ℓ𝑝
𝑞
-GIES as a class of offspring algorithms

Update formula of ℓ𝑝
𝑞

-GIES*

mj
a = 𝑚𝑗

b + 𝑆𝑚 𝑆𝑔
𝑇𝐶𝑑

−1𝑆𝑔 + 𝛾𝑀𝑅 𝑚𝑗
b, ഥ𝑚𝑏

−1
𝑆𝑔
𝑇𝐶𝑑

−1 𝑑𝑜 − 𝑔 𝑚𝑗
𝑏

*Luo, X. (2021). Novel iterative ensemble smoothers derived from a class of generalized cost functions. Computational 
Geosciences, 25(3), 1159-1189.



• When 𝑝 = 𝑞 = 2, 𝐾 = 1,  the ℓ2
2-GIES algorithm is reduced to the original IES in Luo et al.*

• In general, infinitely many choices for the (𝑝, 𝑞) pair (𝑝, 𝑞 not necessarily being integers), leading to ℓ𝑝
𝑞

-GIES

algorithms beyond the form of nonlinear-least-squares in general

• Also many choices for 𝐁𝑖/Φ𝑖

ℓ𝑝
𝑞
-GIES as a class of offspring algorithms

𝑅[Φ 𝑚𝑎 −Φ(𝑚𝑏)] =

𝑖=1

𝐾

𝑤𝑖 ‖𝐁𝑖(Φ𝑖 𝑚
𝑎 −Φ𝑖(𝑚

𝑏))‖𝑝𝑖
𝑞𝑖

*Luo, X. et al. (2015). Iterative Ensemble Smoother as an Approximate Solution to a Regularized Minimum-Average-Cost 
Problem: Theory and Applications. SPE Journal, vol. 20, 962-982



Applications of ℓ𝑝
𝑞
-GIES: Case study 2 

Model size (gridblock) 50 x 50

Phases Oil, gas and water

Wells 4 producers  + 1 injector 

Data for history 
matching

BHP, WWPR, WGPR and WOPR, from Day 1 – Day 
1500

Parameters to 
estimate

Permeability (PERM) and porosity (PORO) on all 
gridblocks

History matching 
algorithm

7 ℓ𝑝
𝑞

-GIES (including the original IES), with 100 

ensemble members + correlation based adaptive 
localization, and 10 iteration steps 



Applications of ℓ𝑝
𝑞
-GIES: Case study 2 

Results
(more information 
available
in the paper*)

*Luo, X. (2021). Novel iterative ensemble smoothers derived from a class of generalized cost functions. Computational 
Geosciences, 25(3), 1159-1189.



Applications of ℓ𝑝
𝑞
-GIES: Case study 2 

PERM estimated by the 
ℓ2
2-GIES (the original IES)

PERM estimated by the 
ℓ1
2-GIES (achieving the 

best results in this case 
study)



Applications of ℓ𝑝
𝑞
-GIES: Case study 2 

PORO estimated by the 
ℓ2
2-GIES (the original IES)

PORO estimated by the 
ℓ1
2-GIES (achieving the

best results in this case 
study)
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Constrained GIES (C-GIES) for data assimilation 

with soft constraints (DASC)

Available sources of information in a DASC problem, :

➢ Original observation system: 𝒅𝒔𝒊𝒎 = 𝒈 𝒎

➢ Equality constraint system: 𝒇𝒆𝒒 𝒎 = 𝟎

➢ Inequality constraint system: 𝒉𝒊𝒏 𝒎 ≤ 𝟎



Constrained GIES (C-GIES) for data assimilation 

with soft constraints (DASC)

𝐿 𝑚𝑎|𝑑𝑜, 𝑚𝑏 = 𝐷 Γ 𝑑𝑜 − Γ 𝑔 𝑚𝑎 +
𝛾

2
𝑚 −𝑚𝑏 𝑇

𝐶𝑚
−1(𝑚 −𝑚𝑏)

𝐷 𝛤 𝑑𝑜 − 𝛤 𝑔 𝑚𝑎 =
1

2
𝑑𝑜 − 𝑔 𝑚𝑎

𝑇

𝐶𝑑
−1 𝑑𝑜 − 𝑔 𝑚𝑎 + 𝛼 𝐷𝑒𝑞 0 − 𝑓𝑒𝑞 𝑚𝑎 + 𝛽 𝐷𝑖𝑛(0 − ℎ𝑖𝑛 𝑚𝑎 )



Constrained GIES (C-GIES) for data assimilation 

with soft constraints (DASC)

Update formula of C-GIES*

mj
a = 𝑚𝑗

b + 𝐾 𝑆𝑔
𝑇𝐶𝑑

−1 𝑑𝑜 − 𝑔 𝑚𝑗
b + 𝛼𝑆feq

𝑇 ∇𝐷𝑒𝑞[0 − 𝑓𝑒𝑞 𝑚𝑗
b ] + 𝛽𝑆ℎ𝑖𝑛

𝑇 ∇𝐷𝑖𝑛[0 − ℎ𝑖𝑛 𝑚𝑗
b ]

𝐾 ≡ 𝑆𝑚 𝑆g
𝑇 𝐶𝑑

−1 𝑆g + 𝛼𝑆feq
𝑇 ∇𝐷𝑒𝑞

2 0 − 𝑓𝑒𝑞 ഥ𝑚𝑏 𝑆feq + 𝛽𝑆ℎ𝑖𝑛
𝑇 ∇𝐷𝑖𝑛

2 0 − ℎ𝑖𝑛 ഥ𝑚𝑏 𝑆hin + 𝛾𝐼
−1

Red: impact of equality constraints on model update

Green: impact of inequality constraints on model update

𝛼 = 𝛽 = 0 ⇒ original IES algorithm 

*Luo, X., Cruz, W. (2021). Data assimilation with soft constraints (DASC) through a generalized iterative ensemble smoother. 
Submitted for review



Constrained GIES (C-GIES) for data assimilation 

with soft constraints (DASC)

mj
a = 𝑚𝑗

b + 𝐾 𝑆𝑔
𝑇𝐶𝑑

−1 𝑑𝑜 − 𝑔 𝑚𝑗
b + 𝛼𝑆feq

𝑇 ∇𝐷𝑒𝑞[0 − 𝑓𝑒𝑞 𝑚𝑗
b ] + 𝛽𝑆ℎ𝑖𝑛

𝑇 ∇𝐷𝑖𝑛[0 − ℎ𝑖𝑛 𝑚𝑗
b ]

*Luo, X., Cruz, W. (2021). Data assimilation with soft constraints (DASC) through a generalized iterative ensemble smoother. 
Submitted for review

Leveraging efficient solutions to the following two problems*:

• Localization in the presence of constraints

• High dimensionality of the constraint system



Grid geometry of the Brugge field

Experimental settings
Model size 139x48x9, with 44550 out of 60048 being 

active gridcells

Parameters to estimate PORO, PERMX, PERMY, PERMZ. Total number is 
4x44550 = 178,200

Production data (~10 yrs) BHP, OPR, WCT. Total number is 1400 

Constraint system Upper and lower bounds for each parameter. 
Dimension of the constraint system 

= 2 x 178,200  = 356,4000

History matching algorithm C-GIES + correlation-based adaptive 
localization, 10 iteration steps

Numerical example 2: 3D Brugge field



Numerical example 2: 3D Brugge field
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• GIES as an umbrella algorithm, able to derive infinitely many new IES

➢ ℓ𝑝
𝑞

-GIES

➢ C-GIES

➢ Likely more

• Applicable to large scale problems

• Remaining open problems

➢ Optimal choices of weight coefficients (e.g., 𝛼, 𝛽)

➢ Optimal choices of the cost functional 𝐷[Γ 𝑑𝑜 − Γ(𝑔 𝑚𝑎 )] + 𝛾𝑅[Φ 𝑚𝑎 −Φ(𝑚𝑏)] in various 
problems

Discussion and conclusion
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Applications of ℓ𝑝
𝑞
-GIES: Case study 1 

Reference permeability field
Model size (gridblock) 45 x 45

Phases Oil and water

Wells 8 producers (P1-P8) and 8 injectors (I1-I8)

Data for history 
matching

BHP from injectors + OPR and WPR from producers, 
from Day 1 – Day 1900

Data for cross-
validation

Forecast BHP from injectors + forecast OPR and WPR 
from producers, from Day 1901 – Day 3800

Parameters to 
estimate

Permeability on all gridblocks

History matching 
algorithm

31 ℓ𝑝
𝑞

-GIES (including the original IES), with 100 

ensemble members + correlation based adaptive 
localization, and 50 iteration steps 



Results
(more information 
available
in the paper*)

*Luo, X. (2021). Novel iterative ensemble smoothers derived from a class of generalized cost functions. Computational 
Geosciences, 25(3), 1159-1189.



Application of ℓ𝒑
𝒒
-GIES: Case study 1

Adopting ℓ𝑝
𝑞

-GIES algorithms

𝐿 𝑚𝑎|𝑑𝑜, 𝑚𝑏, 𝛾 =
1

2
𝑑𝑜 − 𝑔 𝑚𝑎

𝑇

𝐶𝑑
−1 𝑑𝑜 − 𝑔 𝑚𝑎 + 𝛾𝑅[Φ 𝑚𝑎 −Φ(𝑚𝑏)]

with 𝑅 consisting of 5 individual terms with the ℓ2
2 or ℓ1

2 metric  

2𝑅[Φ 𝑚𝑎 −Φ(𝑚𝑏)] = 𝑤1‖𝐁1 𝑚𝑎 −𝑚𝑏 ‖2
2 + 𝑤2 𝑇𝑉 𝑚𝑎 − TV 𝑚𝑏 ‖2

2 + 𝑤3 𝑇𝑉 𝑚𝑎 − TV 𝑚𝑏 ‖1
2

+ 𝑤4 𝐼𝐸ℎ𝑖𝑠𝑡 𝑚
𝑎 − 𝐼𝐸ℎ𝑖𝑠𝑡 𝑚

𝑏 ‖2
2 +𝑤5 𝐼𝐸ℎ𝑖𝑠𝑡 𝑚

𝑎 − 𝐼𝐸ℎ𝑖𝑠𝑡 𝑚
𝑏 ‖1

2

𝐁1
T𝐁1 = (𝑆𝑚𝑆𝑚

𝑇 )−1, and in effect, 𝐁𝑖 all equal to identity matrices for 𝑖 = 2,3,4,5

𝑇𝑉: operator computing the first-order total variation (TV) of a reservoir model

𝐼𝐸ℎ𝑖𝑠𝑡: operator computing the information entropy (IE) of the histogram of a reservoir model



2𝑅[Φ 𝑚𝑎 −Φ(𝑚𝑏)] = 𝑤1‖𝐁1 𝑚𝑎 −𝑚𝑏 ‖2
2 + 𝑤2 𝑇𝑉 𝑚𝑎 − TV 𝑚𝑏 ‖2

2 + 𝑤3 𝑇𝑉 𝑚𝑎 − TV 𝑚𝑏 ‖1
2

+ 𝑤4 𝐼𝐸ℎ𝑖𝑠𝑡 𝑚
𝑎 − 𝐼𝐸ℎ𝑖𝑠𝑡 𝑚

𝑏 ‖2
2 + 𝑤5 𝐼𝐸ℎ𝑖𝑠𝑡 𝑚

𝑎 − 𝐼𝐸ℎ𝑖𝑠𝑡 𝑚
𝑏 ‖1

2

• When 𝑤1=1, 𝑤𝑖 = 0, 𝑖 = 2,3,4,5, recovering the original IES

• 5-bit binary encoding system 𝑒1𝑒2𝑒3𝑒4𝑒5 , 𝑒𝑖 ∈ 0,1 , 𝑖 = 1,2,3,4,5, used to refer the resulting ℓ𝑝
𝑞

-GIES 

algorithms. If 𝑤𝑖 = 0, 𝑒𝑖 = 0; otherwise, 𝑒𝑖 = 1. Example: the original IES encoded as 10000

• This leads to 31 ℓ𝑝
𝑞

-GIES algorithms in total for performance comparison, excluding the one with the code 00000 (no 

regularization)

• Data mismatch during the forecast period as the performance measure

Application of ℓ𝒑
𝒒
-GIES: Case study 1



Inequality constraint system with barrier 
function (pushing away from the boundary)

Equality constraint system with channel 
function (attracting towards the boundary)

Constrained GIES (C-GIES) for data assimilation 

with soft constraints (DASC)


