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Model-error for the advection

As a simple example, consider that the nature is given by the advection

∂tc + u∂xc = 0, (1)

where u(t , x) > 0 is an heterogeneous wind field and c(t , x) a passive
scalar field.

Note that c is conserved along the characteristic curves (see e.g.
[Boyd, 2001, chap. 14]), that is

dx
dt

= u, (2a)

dc
dt

= 0. (2b)

Now suppose the dynamics is numerically solved by the Euler-upwind
scheme,

cq+1
i − cq

i
δt

= −ui
cq

i − cq
i−1

δx
, (3)
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u(x)→

Figure: Nature versus numerical dynamics

Transport with conservation for the nature
but heterogeneous damping for the num. model == model error.
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Dynamics of the model-error covariance

Sketch of the uncertainty evolution in presence of model-error

N (resp. M) denotes the nature (the numerical model). The orange
ellipse represents the forecast-error covariance matrix Pf

q+1.
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Modelling of the model-error covariance

In the diffusive case (b) the forecast-error covariance matrix writes
[Pannekoucke et al., 2021]

Pf
q+1 ≈ Pp

q+1 + Πm
q+1 + Qq+1, (4)

with Pp
q+1 = MPa

qMT the predictability-error covariance matrix and

Πm
q+1 = NPa

qNT −MPa
qMT . (5)
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Dynamics of the model-error covariance

With Pf
q+1 ≈ Pp

q+1 + Pm
q+1, it results that the model-error covariance

matrix
Pm

q+1 = Πm
q+1 + Qq+1, (6)

expands as a
flow-dependent part Πm

q+1 = NPa
qNT −MPa

qMT ,
climatological part Qq+1.

So to focuse on the flow-dependent part, we need to compute the
predictability-error covariance matrices NPa

qNT and MPa
qMT .

From M we can compute MPa
qMT from an ensemble. But in practice

since we don’t have N, so we cannot compute NPa
qNT .

We propose to performed the computation by using the parametric
approach.
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Parametric Kalman Filter

What are the PKF equations for the forecast steps ?
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VLAT covariance matrices

In this talk we consider covariance models parameterized by the
variance and the local anistropy tensor fields – the VLATcov model
[Pannekoucke, 2021]. For an error field ε(t , x),

the variance is defined as V (t , x) = E
[
ε2]

the local anisotropy tensor is given either by the metric tensor,
g(t , x), which measures the anisotropy of the correlation function

ρ(t , x , x + δx) =
E [ε(t , x)ε(t , x + δx)]√

VxVx+δx
=

δx→0
1− 1

2
||δx ||2gx +O(δx2),

or the the aspect tensor, s(t , x), which is the matrix inverse of
the metric tensor

sx = g−1
x .

Note that (gx )ij = E
[
∂i

(
ε√
V

)
∂j

(
ε√
V

)]
.
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PKF for VLATcov models

The parametric Kalman filter dynamics for the variance and the local
anisotropy writes as

∂tV = 2E [ε∂tε] , (7)

∂tg = ∂tE
[
∂i

(
ε√
V

)
∂j

(
ε√
V

)]
, (8)

which can be computed by using a computer algebra system.

SymPKF performs the symbolic computation of the PKF for VLATcov
model and can also automatically generate a finite difference
implementation for the numerical exploration
[Pannekoucke and Arbogast, 2021].

see https://github.com/opannekoucke/sympkf
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Predictability-error covariance dynamics: the nature

The PKF dynamics for the transport equation, over a 1D domain,
computed with SymPKF leads to the predictabilty error dynamics for
the nature:

∂t c̃ = −u∂x c̃, (9)

∂t Ṽ p = −u∂x Ṽ p, (10)
∂t s̃p = −u∂x s̃p + 2s̃p∂xu, (11)

stands for NPa
qNT , where ·̃ denotes the statistics for the nature.

The variance is conserved, while the anisotropy is stretched by the
shear (the term 2s∂xu).
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Predictability-error covariance dynamics: the model

The modified equation associated with the Euler-upwind scheme

cq+1
i − cq

i
δt

= −ui
cq

i − cq
i−1

δx
, (12)

reads as
∂tC + U∂xC = κ∂2

x C, (13)

where {
U(t , x) = u − δt

2 ∂tu + δt
2 u∂xu,

κ(t , x) = u
2 (δx − uδt) .

(14)

which shows that the num. model is suffering from dispersion and
dissipation.
Note that similar expressions are obtained for semi-Lagrangian
discretization as used in NWP and air quality.
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Predictability-error covariance dynamics: the model

The PKF dynamics for the num. model, computed with SymPKF, reads
as

∂tc = −U∂xc + κ∂2
x c,

∂tV p = U∂xV p − 2V pκ

sp + κ∂2
x V p − κ (∂xV p)2

2V p

∂tsp = −U∂xsp + 2κsp2E
(
ε̃p∂4

x ε̃
p
)
− 3κ∂2

x sp − 2κ+
6κ (∂xsp)2

sp

− 2κsp∂2
x V p

V p +
κ∂xV p∂xsp

V p +

2κsp (∂xV p)2

V p2 + 2sp∂xU + ∂xκ∂xsp − 2sp∂xκ∂xV p

V p ,

where ε̃p = εp/
√

V p is the normalized error. This stands for MPa
qMT

and appears as a coupled system due to the numerical diffusion
which needs a closure
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Predictability-error covariance dynamics: the model

With the local Gaussian closure [Pannekoucke et al., 2018]
E
(
ε̃p∂4

x ε̃
p
)

= 2∂2
x sp

sp2 + 3
sp2 −

4(∂x sp)2

sp3 , the predictability-error covariance
dynamics reads as

∂tc = −U∂xc + κ∂2
x c,

∂tV p = U∂xV p − 2V pκ

sp + κ∂2
x V p − κ (∂xV p)2

2V p

∂tsp = −U∂xsp + (2∂xU)sp+

κ∂2
x sp + 4κ− 2 (∂xsp)2

sp κ+ ∂xκ∂xsp − 2∂2
x V p

V p κsp+

∂xV p

V
κ∂xsp − 2∂xV p

V p sp∂xκ+
2 (∂xV p)2

V p2 κsp,

Note that closures can be found from data-driven physics considering
an hybridization of physics and AI e.g. PDE-NetGen
[Pannekoucke and Fablet, 2020] see
https://github.com/opannekoucke/pdenetgen
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Predictability-error covariance dynamics PKF
(validated by an ensemble estimation with 6400 members, [Evensen, 2009])
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Predictability-error covariance dynamics PKF
(with the correlation length-scale defined as

√
s)
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Predictability-error covariance dynamics: the model

Note that, using the spatial averaged over the domain, 〈·〉 = 1
D (
∫

) · dx ,
the predictability-error dynamics forM approximately reads as

∂t〈V p〉 = −〈2κ〉
〈sp〉
〈V p〉, (15)

∂t〈sp〉 = 4〈κ〉, (16)

of solution

〈V p〉(t) = 〈V p〉(0)

(
〈sp〉(0)

〈sp〉(0) + 4〈κ〉t

)1/2

, (17)

〈sp〉(t) = 〈sp〉(0) + 4〈κ〉t . (18)
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Time evolution of the low-dependent part of Pm

Evolution of the flow-dependent part of the model-error covariance
Πm

q+1 = NPa
qNT −MPa

qMT
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Spatial averaged of the model-error variance

For the first moments of the experiment, 〈V m〉(t) ∼ t 〈κ〉
〈νp〉(0)〈V

p〉(0),

then 〈V m〉(t) ∼ 1−
(

l2h
l2h+4〈κ〉t

)1/2
, where 〈sp〉(0) = l2h .
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Conclusion

For the parametric Kalman filte (PKF):
In the PKF error-covariance matrix are approximated by some
covariance model
The dynamics of the parameters is an approximation of the
dynamics of the real error-covariance matrix, it often needs a
closures but gives access to the physics of uncertainty.
Some applications are under investigation – see the next
presentation of Martin Sabathier with the assimilation of the Earth
radiation belts

Concerning its application for the model-error covariance properties:
We can compute the predicatability-error dynamics from the PKF
This gives a proxy of the flow-dependent part of the model-error
covariance that could be interesting in the diffusive case
We illustrate this on a simple transport over a 1D domain
Give some clues for inflation in 2D/3D domain applications – see
the next presentation of Richard Ménard
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