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Problem description and motivation



Problem description

Consider the state-space model with additive Gaussian noise

un+1 = Ψ(un) Markov chain

yn+1 = Hun+1 + γn+1 observation

}
n = 0, 1, . . .

with non-linear Ψ : Rd × Ω→ Rd , linear H ∈ Rm×d and

γj
iid∼ N(0, Γ) with {γj} ⊥ {uj}

on filtered probability space (Ω, {Ft}t≥0,F ,P).

Objective: For a given fixed observation Yn := (y1, ..., yn),

approximate un|Yn weakly by an efficient EnKF method.

Dynamics constraint: Ψ needs to be sampled by numerical

methods, e.g., from an SDE

Ψ(un) = un +

∫ 1

0
a(un+s)ds +

∫ 1

0
b(un+s)dWs+n,
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Ensemble Kalman filtering (EnKF)

Notation: P ensemble size, N discretization parameter for Ψ.

Prediction: Given ensemble v̂n,1, . . . v̂n,P with v̂n,i ∼ Pun|Yn
,

approximate Pun+1|Yn
by the empirical measure of

vn+1,i = ΨN(vn,i ).

Update: Assimilate observation yn+1 into vn+1,i by

v̂n+1,i = (I − Kn+1H)vn+1,i + Kn+1(yn+1 + γn+1,i ).

Pun+1|y1:n+1
≈ µN,Pn+1 :=

1

P

P∑
k=1

δv̂n+1,i
.
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Cost of EnKF

For a quantity of interest (QoI) ϕ : Rd → R, at each time n,

EnKF estimator:

E[ϕ(un)|Yn] ≈
∫
Rd

ϕ(x)µN,P
n (dx) =: µN,P

n [ϕ]

Theorem. [Le Gland et al. (2009); H.Hoel et al. (2016)]

Under sufficient regulatory assumptions, for any p ≥ 2 and n ≥ 0 we

achieve

‖µN,P
n [ϕ]− µ∞,∞n [ϕ]‖LP (Ω) = O(ε)

at the compuational cost bounded by

Cost(µN,P
n [ϕ]) h P × Cost(ΨN

n (v))︸ ︷︷ ︸
hN

= O(ε−3).

• Question: Can we improve the cost rate of EnKF?

• Answer: Yes, by Multilevel EnKF (MLEnKF).
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Multilevel EnKF ideas

MLEnKF (Original, 2016):

E[ϕ(un)|Yn] ≈ µML
n [ϕ] :=

L∑
`=0

(µ
N`,P`,K

ML
n

n − µN`−1,P`,K
ML
n

n )[ϕ;ω`]

for N` h 2`, P` exponentially decreasing and

(µ
N`,P`,K

ML
n

n − µN`−1,P`,K
ML
n

n )[ϕ;ω`] coupled through using the same

Kalman gain and driving noise.

MLEnKF (New, 2020):

E[ϕ(un)|Yn] ≈ µMLNEW

n [ϕ]

:=
L∑
`=0

1

M`

M∑̀
m=1

(µ
N`,P`,K

`
n

n − µN`−1,P`,K
`−1
n

n )[ϕ;ω`,m]

for N` h 2`, P` h 2`, M` exponentially decreasing and

(µ
N`,P`,K

`
n

n − µN`−1,P`,K
`−1
n

n )[ϕ;ω`,m] pairwise-coupled samples of

EnKF estimators at different resolution levels.
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New Multilevel EnKF (MLEnKF)



Multilevel sample estimators

1 Introduce a hierarchy of numerical solvers {ΨN`}∞`=0 with

N` h 2`.

2 Note that

E
[
ΨNL(v)

]
=

L∑
`=0

E
[
ΨN`(v)−ΨN`−1(v)

]
, (with ΨN−1(·) := 0),

3 Gives rise to the multilevel Monte Carlo estimator (Giles

2008),

E
[
ΨNL(v)

]
≈

L∑
`=0

EP`
[ΨN`(v)−ΨN`−1(v)],

and . . . the MLEnKF estimator (H.Hoel et.al., 2016)

µML
n [ϕ] :=

L∑
`=0

(µN`,P`
n − µN`−1,P`

n )[ϕ]
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An alternative MLEnKF method

New MLEnKF approach is based on a sample average of independent and

pairwise-coupled samples of EnKF estimators at different resolution

levels.
Pairwise coupling of particles. Set P` = 2P`−1.

For ` ≥ 1, denote an updated ensemble at time n coupled to the

two coarser-level updated ensembles as follows

v̂ `n,i
coupling←−−−→

{
v̂ `−1,1
n,i if i ∈ {1, . . . ,P`−1},
v̂ `−1,2
n,i−P`−1

if i ∈ {P`−1 + 1, . . . ,P`}.

Impose the particle-wise shared initial condition:

v̂ `0,i =

{
v̂ `−1,1

0,i if i ∈ {1, . . . ,P`−1}
v̂ `−1,2

0,i−P`−1
if i ∈ {P`−1 + 1, . . . ,P`}.
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New MLEnKF

Prediction step

Simulate for i = 1, . . . ,P` on hierarchy levels ` = 0, 1, . . . , L

v `n+1,i = ΨN`(v̂ `n,i , ω`,i ), v `−1
n+1,i = ΨN`−1(v̂ `−1

n,i , ω`,i ).

Compute sample covariances of the ensembles as follows

C `
n+1 = Cov[v `

n+1,1:P` ], C `−1,1
n+1 = Cov[v `−1

n+1,1:P`−1
], C `−1,2

n+1 = Cov[v `−1
n+1,P`−1+1:P`

]

Update step

Compute the respective Kalman gains by formula1

K `
n+1 = K(v `

n+1,1:P`), K `−1,1
n+1 = K(v `−1

n+1,1:P`−1
), K `−1,2

n+1 = K(v `−1
n+1,P`−1+1:P`

).

For hierarchy levels ` = 0, 1, . . . , L, update the particles

ỹ `n+1,i = yn+1 + γ`n+1,i , i = 1, ...,P`,

v̂ `n+1,i = (I − K `
n+1H)v `n+1,i + K `

n+1ỹ
`
n+1,i , i = 1, ...,P`,

v̂ `−1,1
n+1,i = (I − K `−1,1

n+1 H)v `−1
n+1,i + K `−1,1

n+1 ỹ `n+1,i , i = 1, ...,P`−1,

v̂ `−1,2
n+1,i = (I − K `−1,2

n+1 H)v `−1
n+1,i+P`−1

+ K `−1,2
n+1 ỹ `n+1,i+P`−1

, i = 1, ...,P`−1.

1K(x) = Cov[x]HT(HCov[x]HT + Γ)−1
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New MLEnKF estimator

Pairwise coupling of EnKF estimators. Correspondingly,

define the fine-level EnKF estimator coupled to the two

coarse-level EnKF estimators by

µN`,P`
n [ϕ] :=

P∑̀
i=1

ϕ(v̂ `n,i )

P`

coupling←−−−−→

µ
N`−1,P`−1,1
n [ϕ] :=

∑P`−1

i=1

ϕ(v̂`−1,1
n,i )

P`−1
,

µ
N`−1,P`−1,2
n [ϕ] :=

∑P`−1

i=1

ϕ(v̂`−1,2
n,i )

P`−1
.

Introduce a decreasing sequence {M`}L`=0 ⊂ N with M`

representing the number of i.i.d. and pairwise-coupled EnKF

estimators and define the new MLEnKF estimator as

µMLNEW

n [ϕ] =
L∑
`=0

M∑̀
m=1

(
µN`,P`,m
n − (µ

N`−1,P`−1,1,m
n + µ

N`−1,P`−1,2,m
n )/2

)
[ϕ]

M`
.

10 / 25



New MLEnKF estimator

Pairwise coupling of EnKF estimators. Correspondingly,

define the fine-level EnKF estimator coupled to the two

coarse-level EnKF estimators by

µN`,P`
n [ϕ] :=

P∑̀
i=1

ϕ(v̂ `n,i )

P`

coupling←−−−−→

µ
N`−1,P`−1,1
n [ϕ] :=

∑P`−1

i=1

ϕ(v̂`−1,1
n,i )

P`−1
,

µ
N`−1,P`−1,2
n [ϕ] :=

∑P`−1

i=1

ϕ(v̂`−1,2
n,i )

P`−1
.

Introduce a decreasing sequence {M`}L`=0 ⊂ N with M`

representing the number of i.i.d. and pairwise-coupled EnKF

estimators and define the new MLEnKF estimator as

µMLNEW

n [ϕ] =
L∑
`=0

M∑̀
m=1

(
µN`,P`,m
n − (µ

N`−1,P`−1,1,m
n + µ

N`−1,P`−1,2,m
n )/2

)
[ϕ]

M`
.

10 / 25



Visual description of couplings
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Convergence of new MLEnKF

Theorem. (MLEnKF convergence)

Under sufficient regularity, for ε > 0, there exists an L(ε) > 0 and

triplet of sequences {P`}, {N`}, {M`} such that

‖µMLNEW

n [ϕ]− µ∞,∞n [ϕ]‖p = O(ε),

is achieved at cost

Cost
(
µMLNEW

n

)
= O(ε−2)

! Compare with the original MLEnKF, where cost is

Cost
(
µML
n [ϕ]

)
= O(|log(ε)|1−nε−2).
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Numerical example

Stochastic dynamics in a double-well

un+1 = Ψ(un) :=

∫ n+1

n
−V ′(ut)dt +

∫ n+1

n

1

2
dWt , (1)

with the potential function and observations given by

V (ut) =
1

2 + 4u2
t

+
u2
t

4
, yn+1 = un+1 + 0.1N (0, 1)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t

−1.0

−0.5

0.0

0.5

1.0

1.5

u(
t)
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Convergence rates

10−1 100 101 102
Runtime [sec]

10−3RM
SE

1

2

3
1

Figure 1: Runtime vs root-MSE for the QoI ϕ(x) = x . Original

MLEnKF (solid-asterisked), new MLEnKF (solid-crossed) and EnKF

(solid-bulleted).

Observation:

‖µEnKF
n [ϕ]− µ∞,∞n [ϕ]‖L2(Ω) . Runtime−1/3,

‖µML
n [ϕ]− µ∞,∞n [ϕ]‖L2(Ω) . Runtime−1/2.
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Summary on new MLEnKF

Main motivations to develop the new MLEnKF:

In many settings, the (theoretical) convergence results in the

new MLEnKF is better than those obtained in the original

MLEnKF.

The approach is closer to classic EnKF =⇒ easier to

implement for practioners.

It can be extended to a multi-index EnKF method.

15 / 25



Summary on new MLEnKF

Main motivations to develop the new MLEnKF:

In many settings, the (theoretical) convergence results in the

new MLEnKF is better than those obtained in the original

MLEnKF.

The approach is closer to classic EnKF =⇒ easier to

implement for practioners.

It can be extended to a multi-index EnKF method.

15 / 25



Summary on new MLEnKF

Main motivations to develop the new MLEnKF:

In many settings, the (theoretical) convergence results in the

new MLEnKF is better than those obtained in the original

MLEnKF.

The approach is closer to classic EnKF =⇒ easier to

implement for practioners.

It can be extended to a multi-index EnKF method.

15 / 25



Multi-index EnKF (MIEnKF)



A brief overview of Multi-index EnKF

Introduce a multi-index ` := (`1, `2) ∈ N2
0.

Define the four-coupled EnKF estimator using the first-order

mixed difference:

∆µ`n[ϕ] := ∆2(∆1µ
N`1

,P`2
n [ϕ]) = ∆2(µ

N`1
,P`2

n − µN`1−1,P`2
n )[ϕ]

=

(
µ
N`1

,P`2
n −

(
µ
N`1

,P`2−1,1
n + µ

N`1
,P`2−1,2

n

)
/2

− µN`1−1,P`2
n +

(
µ
N`1−1,P`2−1,1
n + µ

N`1−1,P`2−1,2
n

)
/2

)
[ϕ]

Introduce a shorter notation as follows

∆µ`n[ϕ] :=

(
µ`n −

µ`−e2,1
n + µ`−e2,2

n

2
− µ`−e1

n +
µ`−1,1
n + µ`−1,2

n

2

)
[ϕ],

with shorthands e1 := (1, 0), e2 := (0, 1), and 1 := (1, 1).
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MIEnKF estimator

For a properly selected index set I, the MIEnKF estimator is

defined by

µMI
n [ϕ] :=

∑
`∈I

M∑̀
m=1

∆µ`,mn [ϕ]

M`
,

where {∆µ`,mn [ϕ]}M`
m=1 are i.i.d. copies of ∆µ`n[ϕ], and

{∆µ`,mn [ϕ]}(`,m) are mutually independent.

Note that multi-index here refers to a two-index method,

consisting of a hierarchy of EnKF estimators that are

coupled in two degrees of freedom: time discretization N`1

and ensemble size P`2 .

Sampling four-coupled EnKF estimators may lead to a

stronger variance reduction than that achieved by

pairwise-coupling in MLEnKF.
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MIEnKF algorithm

Prediction step

Given the four-coupled (v̂`n,i , v̂
`−e1
n,i , v̂`−e2

n,i , v̂`−1
n,i ) updated

states for i = 1, . . . ,P`2 , the prediction states are given by

v`
n+1,i = Ψ

N`1
n (v̂`

n,i ), v`−e1
n+1,i = Ψ

N`1−1
n (v̂`−e1

n,i ),

v`−e2
n+1,i = Ψ

N`1
n (v̂`−e2

n,i ), v`−1
n+1,i = Ψ

N`1−1
n (v̂`−1

n,i ),

Compute sample covariances of the following ensembles
C `
n+1 = Cov[v`

n+1,1:P`2
], C `−e1

n+1 = Cov[v`−e1
n+1,1:P`2

],

C `−e2,1
n+1 = Cov[v`−e2

n+1,1:P`2−1
], C `−e2,2

n+1 = Cov[v`−e2
n+1,P`2−1+1:P`2

],

C `−1,1
n+1 = Cov[v`−1

n+1,1:P`2−1
], C `−1,2

n+1 = Cov[v`−1
n+1,P`2−1+1:P`2

].

Update step

The respective Kalman gains are
K `

n+1 = K(v`
n+1,1:P`2

), K `−e1
n+1 = K(v`−e1

n+1,1:P`2
),

K `−e2,1
n+1 = K(v`−e2

n+1,1:P`2−1
), K `−e2,2

n+1 = K(v`−e2
n+1,P`2−1+1:P`2

),

K `−1,1
n+1 = K(v`−1

n+1,1:P`2−1
), K `−1,2

n+1 = K(v`−1
n+1,P`2−1+1:P`2

)
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MIEnKF algorithm

Update step

The perturbed observations are also particle-wise coupled, so

that the updated particle states are:

ỹ`n+1,i = yn+1 + η`n+1,i ,

v̂`n+1,i = (I − K `
n+1H)v`n+1,i + K `

n+1ỹ
`
n+1,i ,

v̂`−e1
n+1,i = (I − K `−e1

n+1 H)v`−e1
n+1,i + K `−e1

n+1 ỹ`n+1,i ,


for i = 1, . . . ,P`2 , {η

`2
n+1,i}

P`2
i=1 are i.i.d. with η`2

n+1,1 ∼ N(0, Γ),

v̂`−e2,1
n+1,i = (I − K `−e2,1

n+1 H)v`−e2
n+1,i + K `−e2,1

n+1 ỹ`n+1,i ,

v̂`−e2,2
n+1,i = (I − K `−e2,2

n+1 H)v`−e2
n+1,i+P`2−1

+ K `−e2,2
n+1 ỹ`n+1,i+P`2−1

,

v̂`−1,1
n+1,i = (I − K `−1,1

n+1 H)v`−1
n+1,i + K `−1,1

n+1 ỹ`n+1,i ,

v̂`−1,2
n+1,i = (I − K `−1,2

n+1 H)v`−1
n+1,i+P`2−1

+ K `−1,2
n+1 ỹ`n+1,i+P`2−1

,


for i = 1, ...,P`2−1.
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MIEnKF complexity

Assumption

For N`1 h 2`1 ,P`2 h 2`2 ∀` ∈ N2
0 and ϕ : Rd → R, the four-coupled

EnKF estimator ∆µ`
n[ϕ] satisfies:∣∣E[∆µ`

n[ϕ]
]∣∣ . N−1

`1
P−1
`2
,

V[∆µ`
n[ϕ]] . N−2

`1
P−2
`2
,

Cost(∆µ`
n[ϕ]) h N`1P`2 .

Theorem 1 (MIEnKF complexity)

Under sufficient regulatory assumptions, for any ε > 0 and n ≥ 0, the

index set I = {` ∈ N2
0 | `1 + `2 ≤ L}, with L ' dlog ε−1 + log log ε−1e

and M` h ε−2N
−3/2
`1

P
−3/2
`2

ensures that

E
[(
µMI
n [ϕ]− µ∞,∞n [ϕ]

)2
]

= O(ε2),

Cost(µMI
n [ϕ]) = O(ε−2).
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Numerical example

Again consider nonlinear dynamics with a double well potential

10−1 100 101 102 103
Runtime [sec]

10−4

10−3

RM
SE

Figure 2: Runtime vs root-MSE for the QoI ϕ(x) = x . MIEnKF

(solid-asterisked), new MLEnKF (solid-crossed) and EnKF (solid-bulleted).
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Comparison of computational costs

Methods EnKF New MLEnKF MIEnKF

MSE O(ε2) O(ε2) O(ε2)

Cost O(ε−3) O(ε−2 |log(ε)|3) O(ε−2)

Table 1: Comparison of computational costs versus errors for EnKF,

original MLEnKF, new MLEnKF and MIEnKF methods
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Conclusion

Presented different ideas of combining multilevel and multi-index

Monte Carlo with EnKF to produce new filtering methods that

display efficiency gains over standard single-level EnKF.

A new multi-level EnKF method is based on a sample average of

independent samples of pairwise-coupled EnKF estimators.

Multi-index EnKF method is based on independent samples of

four-coupled EnKF estimators on a multi-index hierarchy of

resolution levels.

Under certain assumptions, the MIEnKF method is proven to be

more tractable than EnKF and MLEnKF, and this is also verified

numerically.

We believe that MIEnKF will often outperform alternative methods

prominently when more than two degrees of freedom need to be

discretized.
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Appendix
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Figure 3: Double Well problem. Estimates based on S = 106

independent runs. Top row: Numerical evidence of weak rate assumption.

Bottom row: Similar plots for verifying strong rate assumption. 25 / 25



EnKF convergence

Assumption 1.

For all p ≥ 2,

1 ‖ΨN(v)‖Lp(Ω,Rd ) . 1 + ‖v‖Lp(Ω,Rd ),

2 ‖ΨN(u)−ΨN(v)‖Lp(Ω,Rd ) . ‖u − v‖Lp(Ω,Rd ),

3 there exists α > 0 s.t. if∣∣E[ϕ(u)− ϕ(vN)
]∣∣ . N−α =⇒

∣∣E[ϕ(Ψ(u))− ϕ(ΨN(vN))
]∣∣ . N−α

Theorem. [Le Gland et al. (2009); H.Hoel et al. (2016)]

If Assumption 1 holds and u0|Y0 ∈ ∩r≥2L
r (Ω,Rd), then for any

ϕ ∈ F, ‖µN,Pn [ϕ]− µ∞,∞n [ϕ]‖Lp(Ω) . P−1/2 + N−α.

• In order to achieve O(ε) accuracy P h ε−2 and N h ε−1/α.

• Then the cost of EnKF is bounded by Cost(µN,Pn [ϕ])h ε−(2+1/α).
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Original MLEnKF – the pairwise coupling

Prediction step

Simulate pairwise coupled particles

v `−1
n+1,i = ΨN`−1(v̂ `−1

n,i , ω`,i ), v `n+1,i = ΨN`(v̂ `n,i , ω`,i ),

for i = 1, . . . ,P` on hierarchy levels ` = 0, 1, . . . , L.

MLMC approximation of prediction covariance:

CML
n+1 =

L∑
`=0

CovP`
[v `n+1]− CovP`

[v `−1
n+1]

Update step

For ` = 0, 1, . . . , L and i = 1, 2, . . . ,P`,
ỹ `n+1,i = yn+1 + γ`n+1,i , i.i.d. γ`n+1,i ∼ N(0, Γ)

v̂ `−1
n+1,i = (I − KML

n+1H)v `−1
n+1,i + KML

n+1ỹ
`
n+1,i ,

v̂ `n+1,i = (I − KML
n+1H)v `n+1,i + KML

n+1ỹ
`
n+1,i ,

where KML
n+1 = CML

n+1H
T(HCML

n+1H
T + Γ)−1.
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Original MLEnKF accuracy vs. cost

Theorem. [H.Hoel et al., 2016]

If, in addition to Assumption 1 for EnKF, there exists a β > 0 such that

for all p ≥ 2 and v ∈ ∩r≥2L
r (Ω,Rd),

‖ΨN`(v)−ΨN`−1 (v)‖Lp(Ω) . (1 + ‖v‖Lp(Ω))N
−β/2
` .

Then, for any u0|Y0 ∈ ∩r∈NLr (Ω), ϕ ∈ F and ε > 0, there exists an

L(ε) > 0 and {P`}L`=0 such that

‖µML
n (ϕ)− µ∞,∞n (ϕ)‖p . ε.

And

Cost
(
µML
n (ϕ)

)
.


(|log(ε)|1−nε)−2, if β > 1,

(|log(ε)|1−nε)−2 |log(ε)|3 , if β = 1,

(|log(ε)|1−nε)−(2+ 1−β
α ), if β < 1.

! Compare with EnKF, where Cost
(
µN,P
n (ϕ)

)
h ε−(2+ 1

α ).
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Assumptions for new MLEnKF

Assumption 2.

Let |κ|1 :=
∑d

i=1 κi for any κ ∈ Nd
0 . For all ` ∈ N0 ∪ {∞} and

p ≥ 2,

(i) for all |κ|1 ≤ 1,∥∥∥∂κΨN`(u)
∥∥∥
Lp(Ω,Rd )

. (1 + ‖u‖Lp(Ω,Rd )),

(ii) for all |κ|1 = 2,∥∥∥∂κΨN`(u)
∥∥∥
L2p(Ω,Rd )

. (1 + ‖u‖L2p(Ω,Rd )),

(iii) for all |κ|1 ≤ 1,∥∥∥∂κΨN`+1(u)− ∂κΨN`(u)
∥∥∥
Lp(Ω,Rd )

. (1 + ‖u‖Lp(Ω,Rd ))N
−β/2
` .
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Convergence of new MLEnKF

Theorem. (MLEnKF convergence)

If Assumptions 1 and 2 hold, then for any u0|Y0 ∈ ∩r∈NLr (Ω), ϕ ∈ F,

n ≥ 0, p ≥ 2 and ε > 0, there exists an L(ε) > 0 and triplet of

sequences {P`}, {N`}, {M`} such that

‖µMLNEW

n [ϕ]− µ∞,∞n [ϕ]‖p . ε.

Cost
(
µMLNEW

n

)
.


ε−2 if β > 1, α > 1,

ε−2| log(ε)|3 if (β > 1, α = 1) or (β = 1, α ≥ 1),

ε−(1+1/α) if (β ≥ 1, α < 1) or (β < 1, α ≤ β),

ε−(2+(1−β)/α) if β < 1, α > β.

with the configuration P` h 2`, N` h 2s` for any s > 0.

! Compare with old MLEnKF, where cost is

Cost
(
µML
n [ϕ]

)
.


(|log(ε)|1−nε)−2, if β > 1,

(|log(ε)|1−nε)−2 |log(ε)|3 , if β = 1,

(|log(ε)|1−nε)−(2+ 1−β
α ), if β < 1. 25 / 25



Choosing the index set I

We assume I = {` ∈ N2
0 | `1 + `2 ≤ L}.

Figure 4: Illustration of multi-index set I.

The problem of optimizing the set I may be recast as a

knapsack optimization problem.
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DMFEnKF algorithm

• The initial updated density ρ̂̄v0
= ρu0|Y0

, the number of time steps Nt ,

the number of spatial steps Nx , the discretization interval [x0, x1], the

simulation length N .

• The prediction and updated density, ρv̄n and ρˆ̄vn
, respectively.

∆t = 1
Nt

, ∆x = x1−x0

Nx
.

For n=1 : N

1 Compute the prediction density ρv̄n(x) = S1ρ̂̄vn−1
by a numerical

method (e.g., Crank-Nicolson) with the discretization steps

(∆t,∆x).

2 Compute the prediction covariance

C̄n =
∫
x2ρv̄n(x)dx − (

∫
xρv̄n(x)dx)2 using a quadrature rule.

3 Compute the Kalman gain K̄n = C̄nH
T(HC̄nH

T + Γ)−1.

4 Compute the updated density ρ̂̄vn = ρX ∗ ρY by discrete convolution

of the two functions represented on the spatial mesh.

end 25 / 25



Bayes filter vs MFEnKF

Illustration of contracting property: given nonlinear Ψ defined by the

SDE du = −(u + π cos(πu/5)/5)dt + σdW and having different update

densities at time n, we have almost identical prediction densities at time

n + 1 for both Bayes filter and MFEnKF.

Ψ is defined by the SDE du = −(u + π cos(πu/5)/5)dt + σdW
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