Multilevel and multi-index

EnKF algorithms

Gaukhar Shaimerdenova ${ }^{1}$ Håkon Hoel ${ }^{2}$

RMUHACHEN

\qquad

$1 / 25$

Overview

1 Problem description and motivation

2 New Multilevel EnKF (MLEnKF)

3 Multi-index EnKF (MIEnKF)

4 Conclusion

Problem description and motivation

Problem description

Consider the state-space model with additive Gaussian noise

$$
\left.\begin{array}{lr}
u_{n+1}=\psi\left(u_{n}\right) & \text { Markov chain } \\
y_{n+1}=H u_{n+1}+\gamma_{n+1} & \text { observation }
\end{array}\right\} \quad n=0,1, \ldots
$$

with non-linear $\psi: \mathbb{R}^{d} \times \Omega \rightarrow \mathbb{R}^{d}$, linear $H \in \mathbb{R}^{m \times d}$ and

$$
\gamma_{j} \stackrel{i i d}{\sim} N(0, \Gamma) \quad \text { with } \quad\left\{\gamma_{j}\right\} \perp\left\{u_{j}\right\}
$$

on filtered probability space $\left(\Omega,\left\{\mathcal{F}_{t}\right\}_{t \geq 0}, \mathcal{F}, \mathbb{P}\right)$.

Objective: For a given fixed observation $Y_{n}:=\left(y_{1}, \ldots, y_{n}\right)$, approximate $u_{n} \mid Y_{n}$ weakly by an efficient EnKF method.

Dynamics constraint: Ψ needs to be sampled by numerical methods, e.g., from an SDE

$$
\Psi\left(u_{n}\right)=u_{n}+\int_{0}^{1} a\left(u_{n+s}\right) d s+\int_{0}^{1} b\left(u_{n+s}\right) d W_{s+n}
$$

Ensemble Kalman filtering (EnKF)

Notation: P ensemble size, N discretization parameter for Ψ.
Prediction: Given ensemble $\hat{v}_{n, 1}, \ldots \hat{v}_{n, P}$ with $\hat{v}_{n, i} \sim \mathbb{P}_{u_{n} \mid Y_{n}}$, approximate $\mathbb{P}_{u_{n+1} \mid Y_{n}}$ by the empirical measure of
$v_{n+1, i}=\Psi^{N}\left(v_{n, i}\right)$.

Update: Assimilate observation y_{n+1} into $v_{n+1, i}$ by

$$
\begin{aligned}
\hat{v}_{n+1, i}= & \left(I-K_{n+1} H\right) v_{n+1, i}+K_{n+1}\left(y_{n+1}+\gamma_{n+1, i}\right) \\
& \mathbb{P}_{u_{n+1} \mid y_{1: n+1}} \approx \mu_{n+1}^{N, P}:=\frac{1}{P} \sum_{k=1}^{P} \delta_{\hat{v}_{n+1, i}} .
\end{aligned}
$$

Cost of EnKF

For a quantity of interest (Qol) $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}$, at each time n, EnKF estimator:

$$
\mathbb{E}\left[\varphi\left(u_{n}\right) \mid Y_{n}\right] \approx \int_{\mathbb{R}^{d}} \varphi(x) \mu_{n}^{N, P}(\mathrm{~d} x)=: \mu_{n}^{N, P}[\varphi]
$$

> Theorem. [Le Gland et al. (2009); H.Hoel et al. (2016)] Under sufficient regulatory assumptions, for any $p \geq 2$ and $n \geq 0$ we achieve
at the compuational cost bounded by
$\operatorname{Cost}(\mu_{n}^{n i D}\left[\phi^{\prime}\right) \sim P \underbrace{\operatorname{Cost}\left(U^{N}(v)\right)}=O\left(e^{-3}\right)$.

- Question: Can we improve the cost rate of EnKF?

Cost of EnKF

For a quantity of interest (Qol) $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}$, at each time n, EnKF estimator:

$$
\mathbb{E}\left[\varphi\left(u_{n}\right) \mid Y_{n}\right] \approx \int_{\mathbb{R}^{d}} \varphi(x) \mu_{n}^{N, P}(\mathrm{~d} x)=: \mu_{n}^{N, P}[\varphi]
$$

Theorem. [Le Gland et al. (2009); H.Hoel et al. (2016)]
Under sufficient regulatory assumptions, for any $p \geq 2$ and $n \geq 0$ we achieve

$$
\left\|\mu_{n}^{N, P}[\varphi]-\mu_{n}^{\infty, \infty}[\varphi]\right\|_{L^{P}(\Omega)}=\mathcal{O}(\epsilon)
$$

at the compuational cost bounded by

$$
\operatorname{Cost}\left(\mu_{n}^{N, P}[\varphi]\right) \approx P \times \underbrace{\operatorname{Cost}\left(\Psi_{n}^{N}(v)\right)}_{\approx N}=\mathcal{O}\left(\epsilon^{-3}\right) .
$$

Cost of EnKF

For a quantity of interest (Qol) $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}$, at each time n, EnKF estimator:

$$
\mathbb{E}\left[\varphi\left(u_{n}\right) \mid Y_{n}\right] \approx \int_{\mathbb{R}^{d}} \varphi(x) \mu_{n}^{N, P}(\mathrm{~d} x)=: \mu_{n}^{N, P}[\varphi]
$$

Theorem. [Le Gland et al. (2009); H.Hoel et al. (2016)]
Under sufficient regulatory assumptions, for any $p \geq 2$ and $n \geq 0$ we achieve

$$
\left\|\mu_{n}^{N, P}[\varphi]-\mu_{n}^{\infty, \infty}[\varphi]\right\|_{L^{P}(\Omega)}=\mathcal{O}(\epsilon)
$$

at the compuational cost bounded by

$$
\operatorname{Cost}\left(\mu_{n}^{N, P}[\varphi]\right) \approx P \times \underbrace{\operatorname{Cost}\left(\Psi_{n}^{N}(v)\right)}_{\approx N}=\mathcal{O}\left(\epsilon^{-3}\right)
$$

- Question: Can we improve the cost rate of EnKF?

Cost of EnKF

For a quantity of interest (Qol) $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}$, at each time n, EnKF estimator:

$$
\mathbb{E}\left[\varphi\left(u_{n}\right) \mid Y_{n}\right] \approx \int_{\mathbb{R}^{d}} \varphi(x) \mu_{n}^{N, P}(\mathrm{~d} x)=: \mu_{n}^{N, P}[\varphi]
$$

Theorem. [Le Gland et al. (2009); H.Hoel et al. (2016)]
Under sufficient regulatory assumptions, for any $p \geq 2$ and $n \geq 0$ we achieve

$$
\left\|\mu_{n}^{N, P}[\varphi]-\mu_{n}^{\infty, \infty}[\varphi]\right\|_{L^{P}(\Omega)}=\mathcal{O}(\epsilon)
$$

at the compuational cost bounded by

$$
\operatorname{Cost}\left(\mu_{n}^{N, P}[\varphi]\right) \approx P \times \underbrace{\operatorname{Cost}\left(\Psi_{n}^{N}(v)\right)}_{\approx N}=\mathcal{O}\left(\epsilon^{-3}\right)
$$

- Question: Can we improve the cost rate of EnKF?
- Answer: Yes, by Multilevel EnKF (MLEnKF).

Multilevel EnKF ideas

MLEnKF (Original, 2016):

$$
\mathbb{E}\left[\varphi\left(u_{n}\right) \mid Y_{n}\right] \approx \mu_{n}^{\mathrm{ML}}[\varphi]:=\sum_{\ell=0}^{L}\left(\mu_{n}^{N_{\ell}, P_{\ell}, K_{n}^{M L}}-\mu_{n}^{N_{\ell-1}, P_{\ell}, K_{n}^{M L}}\right)\left[\varphi ; \omega_{\ell}\right]
$$

for $N_{\ell} \approx 2^{\ell}, P_{\ell}$ exponentially decreasing and
$\left(\mu_{n}^{N_{\ell}, P_{\ell}, K_{n}^{M L}}-\mu_{n}^{N_{\ell-1}, P_{\ell}, K_{n}^{M L}}\right)\left[\varphi ; \omega_{\ell}\right]$ coupled through using the same Kalman gain and driving noise.

[^0]
Multilevel EnKF ideas

MLEnKF (Original, 2016):

$$
\mathbb{E}\left[\varphi\left(u_{n}\right) \mid Y_{n}\right] \approx \mu_{n}^{\mathrm{ML}}[\varphi]:=\sum_{\ell=0}^{L}\left(\mu_{n}^{N_{\ell}, P_{\ell}, K_{n}^{M L}}-\mu_{n}^{N_{\ell-1}, P_{\ell}, K_{n}^{M L}}\right)\left[\varphi ; \omega_{\ell}\right]
$$

for $N_{\ell} \approx 2^{\ell}, P_{\ell}$ exponentially decreasing and
$\left(\mu_{n}^{N_{\ell}, P_{\ell}, K_{n}^{M L}}-\mu_{n}^{N_{\ell-1}, P_{\ell}, K_{n}^{M L}}\right)\left[\varphi ; \omega_{\ell}\right]$ coupled through using the same Kalman gain and driving noise.

MLEnKF (New, 2020):

$$
\begin{aligned}
\mathbb{E}\left[\varphi\left(u_{n}\right) \mid Y_{n}\right] & \approx \mu_{n}^{\mathrm{ML}^{\mathrm{NEW}}}[\varphi] \\
& :=\sum_{\ell=0}^{L} \frac{1}{M_{\ell}} \sum_{m=1}^{M_{\ell}}\left(\mu_{n}^{N_{\ell}, P_{\ell}, K_{n}^{\ell}}-\mu_{n}^{N_{\ell-1}, P_{\ell}, K_{n}^{\ell-1}}\right)\left[\varphi ; \omega_{\ell, m}\right]
\end{aligned}
$$

for $N_{\ell} \approx 2^{\ell}, P_{\ell} \approx 2^{\ell}, M_{\ell}$ exponentially decreasing and $\left(\mu_{n}^{N_{\ell}, P_{\ell}, K_{n}^{\ell}}-\mu_{n}^{N_{\ell-1}, P_{\ell}, K_{n}^{\ell-1}}\right)\left[\varphi ; \omega_{\ell, m}\right]$ pairwise-coupled samples of EnKF estimators at different resolution levels.

New Multilevel EnKF (MLEnKF)

Multilevel sample estimators

1 Introduce a hierarchy of numerical solvers $\left\{\Psi^{N_{\ell}}\right\}_{\ell=0}^{\infty}$ with $N_{\ell} \approx 2^{\ell}$.
2 Note that

$$
\mathbb{E}\left[\Psi^{N_{L}}(v)\right]=\sum_{\ell=0}^{L} \mathbb{E}\left[\Psi^{N_{\ell}}(v)-\Psi^{N_{\ell-1}}(v)\right], \quad\left(\text { with } \Psi^{N_{-1}}(\cdot):=0\right)
$$

3 Gives rise to the multilevel Monte Carlo estimator (Giles 2008),

$$
\mathbb{E}\left[\Psi^{N_{L}}(v)\right] \approx \sum_{\ell=0}^{L} E_{P_{\ell}}\left[\Psi^{N_{\ell}}(v)-\Psi^{N_{\ell-1}}(v)\right]
$$

and . . . the MLEnKF estimator (H.Hoel et.al., 2016)

$$
\mu_{n}^{\mathrm{ML}}[\varphi]:=\sum_{\ell=0}^{L}\left(\mu_{n}^{N_{\ell}, P_{\ell}}-\mu_{n}^{N_{\ell-1}, P_{\ell}}\right)[\varphi]
$$

An alternative MLEnKF method

New MLEnKF approach is based on a sample average of independent and pairwise-coupled samples of EnKF estimators at different resolution levels.

■ Pairwise coupling of particles. Set $P_{\ell}=2 P_{\ell-1}$.

■ For $\ell \geq 1$, denote an updated ensemble at time n coupled to the two coarser-level updated ensembles as follows

$$
\hat{v}_{n, i}^{\ell} \stackrel{\text { coupling }}{\longleftrightarrow} \begin{cases}\hat{v}_{n, i}^{\ell-1,1} & \text { if } \quad i \in\left\{1, \ldots, P_{\ell-1}\right\}, \\ \hat{v}_{n, i-P_{\ell-1}}^{\ell-1,2} & \text { if } \quad i \in\left\{P_{\ell-1}+1, \ldots, P_{\ell}\right\}\end{cases}
$$

■ Impose the particle-wise shared initial condition:

$$
\hat{v}_{0, i}^{\ell}= \begin{cases}\hat{v}_{0, i}^{\ell-1,1} & \text { if } \quad i \in\left\{1, \ldots, P_{\ell-1}\right\} \\ \hat{v}_{0, i-P_{\ell-1}}^{\ell-1,2} & \text { if } \quad i \in\left\{P_{\ell-1}+1, \ldots, P_{\ell}\right\}\end{cases}
$$

New MLEnKF

Prediction step

■ Simulate for $i=1, \ldots, P_{\ell}$ on hierarchy levels $\ell=0,1, \ldots, L$

$$
v_{n+1, i}^{\ell}=\Psi^{N_{\ell}}\left(\hat{v}_{n, i}^{\ell}, \omega_{\ell, i}\right), \quad v_{n+1, i}^{\ell-1}=\Psi^{N_{\ell-1}}\left(\hat{v}_{n, i}^{\ell-1}, \omega_{\ell, i}\right)
$$

- Compute sample covariances of the ensembles as follows
$C_{n+1}^{\ell}=\overline{\operatorname{Cov}}\left[v_{n+1,1: P_{\ell}}^{\ell}\right], C_{n+1}^{\ell-1,1}=\overline{\operatorname{Cov}}\left[v_{n+1,1: P_{\ell-1}}^{\ell-1}\right], C_{n+1}^{\ell-1,2}=\overline{\operatorname{Cov}}\left[v_{n+1, P_{\ell-1}+1: P_{\ell}}^{\ell-1}\right]$
Update step
■ Compute the respective Kalman gains by formula ${ }^{1}$

New MLEnKF

Prediction step

■ Simulate for $i=1, \ldots, P_{\ell}$ on hierarchy levels $\ell=0,1, \ldots, L$

$$
v_{n+1, i}^{\ell}=\Psi^{N_{\ell}}\left(\hat{v}_{n, i}^{\ell}, \omega_{\ell, i}\right), \quad v_{n+1, i}^{\ell-1}=\Psi^{N_{\ell-1}}\left(\hat{v}_{n, i}^{\ell-1}, \omega_{\ell, i}\right)
$$

- Compute sample covariances of the ensembles as follows $C_{n+1}^{\ell}=\overline{\operatorname{Cov}}\left[\nu_{n+1,1: P_{\ell}}^{\ell}\right], C_{n+1}^{\ell-1,1}=\overline{\operatorname{Cov}}\left[v_{n+1,1: P_{\ell-1}^{\ell}}^{\ell-1}\right], C_{n+1}^{\ell-1,2}=\overline{\operatorname{Cov}}\left[\nu_{n+1, P_{\ell-1}+1: P_{\ell}}^{\ell-1}\right]$

Update step

- Compute the respective Kalman gains by formula ${ }^{1}$ $K_{n+1}^{\ell}=\mathbf{K}\left(v_{n+1,1: P_{\ell}}^{\ell}\right), \quad K_{n+1}^{\ell-1,1}=\mathbf{K}\left(v_{n+1,1: P_{\ell-1}}^{\ell-1}\right), \quad K_{n+1}^{\ell-1,2}=\mathbf{K}\left(v_{n+1, P_{\ell-1}+1: P_{\ell}}^{\ell-1}\right)$.
- For hierarchy levels $\ell=0,1, \ldots, L$, update the particles

$$
\begin{array}{ll}
\tilde{y}_{n+1, i}^{\ell}=y_{n+1}+\gamma_{n+1, i}^{\ell}, & i=1, \ldots, P_{\ell}, \\
\hat{v}_{n+1, i}^{\ell}=\left(I-K_{n+1}^{\ell} H\right) v_{n+1, i}^{\ell}+K_{n+1}^{\ell} \tilde{y}_{n+1, i}^{\ell}, & i=1, \ldots, P_{\ell}, \\
\hat{v}_{n+1, i}^{\ell-1,1}=\left(I-K_{n+1,1}^{\ell-1,} H\right) v_{n+1, i}^{\ell-1}+K_{n+1}^{\ell-1,1} \tilde{y}_{n+1, i}^{\ell}, & i=1, \ldots, P_{\ell-1}, \\
\hat{v}_{n+1, i}^{\ell-1,2}=\left(I-K_{n+1}^{\ell-1,2} H\right) v_{n+1, i+P_{\ell-1}}^{\ell-1}+K_{n+1}^{\ell-1,2} \tilde{y}_{n+1, i+P_{\ell-1}^{\ell}}^{\ell}, & i=1, \ldots, P_{\ell-1} . \\
{ }^{1} \mathrm{~K}(\mathbf{x})=\overline{\operatorname{Cov}[\mathbf{x}] H^{\top}\left(H \overline{\left.\operatorname{Cov}[\mathbf{x}] H^{\top}+\Gamma\right)^{-1}}\right.} &
\end{array}
$$

New MLEnKF estimator

■ Pairwise coupling of EnKF estimators. Correspondingly, define the fine-level EnKF estimator coupled to the two coarse-level EnKF estimators by

$$
\mu_{n}^{N_{\ell}, P_{\ell}}[\varphi]:=\sum_{i=1}^{P_{\ell}} \frac{\varphi\left(\hat{v}_{n, i}^{\ell}\right)}{P_{\ell}} \stackrel{\text { coupling }}{\longleftrightarrow}\left\{\begin{array}{l}
\left.\mu_{n}^{N_{\ell-1}, P_{\ell-1}, 1}[\varphi]:=\sum_{i=1}^{P_{\ell-1}} \frac{\varphi\left(\hat{v}_{n, i}^{\ell-1,1}\right)}{P_{\ell}}\right) \\
\mu_{n}^{N_{\ell-1}, P_{\ell-1}, 2}[\varphi]:=\sum_{i=1}^{P_{\ell-1}} \frac{\varphi\left(\hat{v}_{n, i}^{-1,2}\right)}{P_{\ell-1}}
\end{array}\right.
$$

New MLEnKF estimator

■ Pairwise coupling of EnKF estimators. Correspondingly, define the fine-level EnKF estimator coupled to the two coarse-level EnKF estimators by

$$
\mu_{n}^{N_{\ell}, P_{\ell}}[\varphi]:=\sum_{i=1}^{P_{\ell}} \frac{\varphi\left(\hat{v}_{n, i}^{\ell}\right)}{P_{\ell}} \stackrel{\text { coupling }}{\longleftrightarrow}\left\{\begin{array}{l}
\left.\mu_{n}^{N_{\ell-1}, P_{\ell-1}, 1}[\varphi]:=\sum_{i=1}^{P_{\ell-1}} \frac{\varphi\left(\hat{(}_{n, i}^{\ell, 1,1}\right)}{P_{\ell}}\right) \\
\mu_{n}^{N_{\ell-1}, P_{\ell-1}, 2}[\varphi]:=\sum_{i=1}^{P_{\ell-1}} \frac{\varphi\left(\hat{v}_{n, i}^{-1,2}\right)}{P_{\ell-1}}
\end{array}\right.
$$

■ Introduce a decreasing sequence $\left\{M_{\ell}\right\}_{\ell=0}^{L} \subset \mathbb{N}$ with M_{ℓ} representing the number of i.i.d. and pairwise-coupled EnKF estimators and define the new MLEnKF estimator as
$\mu_{n}^{\mathrm{ML}}{ }^{\mathrm{NEW}}[\varphi]=\sum_{\ell=0}^{L} \sum_{m=1}^{M_{\ell}} \frac{\left(\mu_{n}^{N_{\ell}, P_{\ell}, m}-\left(\mu_{n}^{N_{\ell-1}, P_{\ell-1}, 1, m}+\mu_{n}^{N_{\ell-1}, P_{\ell-1}, 2, m}\right) / 2\right)[\varphi]}{M_{\ell}}$.

Visual description of couplings

Prediction

MLEnKF estimator

Convergence of new MLEnKF

Theorem. (MLEnKF convergence)

Under sufficient regularity, for $\epsilon>0$, there exists an $L(\epsilon)>0$ and triplet of sequences $\left\{P_{\ell}\right\},\left\{N_{\ell}\right\},\left\{M_{\ell}\right\}$ such that

$$
\left\|\mu_{n}^{\mathrm{ML}}{ }^{\mathrm{NEW}}[\varphi]-\mu_{n}^{\infty, \infty}[\varphi]\right\|_{p}=\mathcal{O}(\epsilon)
$$

is achieved at cost

$$
\operatorname{Cost}\left(\mu_{n}^{\mathrm{ML}}\right)=\mathcal{O}\left(\epsilon^{-2}\right)
$$

! Compare with the original MLEnKF, where cost is

$$
\operatorname{Cost}\left(\mu_{n}^{\mathrm{ML}}[\varphi]\right)=\mathcal{O}\left(|\log (\epsilon)|^{1-n} \epsilon^{-2}\right)
$$

Numerical example

Stochastic dynamics in a double-well

$$
\begin{equation*}
u_{n+1}=\Psi\left(u_{n}\right):=\int_{n}^{n+1}-V^{\prime}\left(u_{t}\right) d t+\int_{n}^{n+1} \frac{1}{2} d W_{t} \tag{1}
\end{equation*}
$$

with the potential function and observations given by

$$
V\left(u_{t}\right)=\frac{1}{2+4 u_{t}^{2}}+\frac{u_{t}^{2}}{4}, \quad y_{n+1}=u_{n+1}+0.1 \mathcal{N}(0,1)
$$

Convergence rates

Figure 1: Runtime vs root-MSE for the Qol $\varphi(x)=x$. Original MLEnKF (solid-asterisked), new MLEnKF (solid-crossed) and EnKF (solid-bulleted).
Observation:

$$
\begin{gathered}
\left\|\mu_{n}^{\mathrm{EnKF}}[\varphi]-\mu_{n}^{\infty, \infty}[\varphi]\right\|_{L^{2}(\Omega)} \lesssim \text { Runtime }^{-1 / 3}, \\
\left\|\mu_{n}^{\mathrm{ML}}[\varphi]-\mu_{n}^{\infty, \infty}[\varphi]\right\|_{L^{2}(\Omega)} \lesssim \text { Runtime }^{-1 / 2}
\end{gathered}
$$

Summary on new MLEnKF

Main motivations to develop the new MLEnKF:

- In many settings, the (theoretical) convergence results in the new MLEnKF is better than those obtained in the original MLEnKF.
implement for practioners.

Summary on new MLEnKF

Main motivations to develop the new MLEnKF:
■ In many settings, the (theoretical) convergence results in the new MLEnKF is better than those obtained in the original MLEnKF.

- The approach is closer to classic EnKF \Longrightarrow easier to implement for practioners.

Summary on new MLEnKF

Main motivations to develop the new MLEnKF:
■ In many settings, the (theoretical) convergence results in the new MLEnKF is better than those obtained in the original MLEnKF.

- The approach is closer to classic EnKF \Longrightarrow easier to implement for practioners.

■ It can be extended to a multi-index EnKF method.

Multi-index EnKF (MIEnKF)

A brief overview of Multi-index EnKF

- Introduce a multi-index $\ell:=\left(\ell_{1}, \ell_{2}\right) \in \mathbb{N}_{0}^{2}$.

■ Define the four-coupled EnKF estimator using the first-order mixed difference:

$$
\begin{aligned}
& \boldsymbol{\Delta} \mu_{n}^{\ell}[\varphi]:=\Delta_{2}\left(\Delta_{1} \mu_{n}^{N_{\ell_{1}}, P_{\ell_{2}}}[\varphi]\right)=\Delta_{2}\left(\mu_{n}^{N_{\ell_{1}}, P_{\ell_{2}}}-\mu_{n}^{N_{\ell_{1}-1}, P_{\ell_{2}}}\right)[\varphi] \\
& =\left(\mu_{n}^{N_{\ell_{1}}, P_{\ell_{2}}}-\left(\mu_{n}^{N_{\ell_{1}}, P_{\ell_{2}-1,1}}+\mu_{n}^{N_{\ell_{1}}, P_{\ell_{2}-1}, 2}\right) / 2\right. \\
& \left.\quad-\mu_{n}^{N_{\ell_{1}-1}, P_{\ell_{2}}}+\left(\mu_{n}^{N_{\ell_{1}-1}, P_{\ell_{2}-1}, 1}+\mu_{n}^{N_{\ell_{1}-1}, P_{\ell_{2}-1}, 2}\right) / 2\right)[\varphi]
\end{aligned}
$$

A brief overview of Multi-index EnKF

- Introduce a multi-index $\ell:=\left(\ell_{1}, \ell_{2}\right) \in \mathbb{N}_{0}^{2}$.

■ Define the four-coupled EnKF estimator using the first-order mixed difference:

$$
\begin{aligned}
& \Delta \mu_{n}^{\ell}[\varphi]:=\Delta_{2}\left(\Delta_{1} \mu_{n}^{N_{\ell_{1}}, P_{\ell_{2}}}[\varphi]\right)=\Delta_{2}\left(\mu_{n}^{N_{\ell_{1}}, P_{\ell_{2}}}-\mu_{n}^{N_{\ell_{1}-1}, P_{\ell_{2}}}\right)[\varphi] \\
& =\left(\mu_{n}^{N_{\ell_{1}}, P_{\ell_{2}}}-\left(\mu_{n}^{N_{\ell_{1}}, P_{\ell_{2}-1}, 1}+\mu_{n}^{N_{\ell_{1}}, P_{\ell_{2}-1}, 2}\right) / 2\right. \\
& \left.\quad-\mu_{n}^{N_{\ell_{1}-1}, P_{\ell_{2}}}+\left(\mu_{n}^{N_{\ell_{1}-1}, P_{\ell_{2}-1}, 1}+\mu_{n}^{N_{\ell_{1}-1}, P_{\ell_{2}-1}, 2}\right) / 2\right)[\varphi]
\end{aligned}
$$

- Introduce a shorter notation as follows

$$
\boldsymbol{\Delta} \mu_{n}^{\ell}[\varphi]:=\left(\mu_{n}^{\ell}-\frac{\mu_{n}^{\ell-\boldsymbol{e}_{2}, 1}+\mu_{n}^{\ell-\boldsymbol{e}_{2}, 2}}{2}-\mu_{n}^{\ell-\boldsymbol{e}_{1}}+\frac{\mu_{n}^{\ell-\mathbf{1}, 1}+\mu_{n}^{\ell-\mathbf{1}, 2}}{2}\right)[\varphi],
$$

with shorthands $\boldsymbol{e}_{1}:=(1,0), \boldsymbol{e}_{2}:=(0,1)$, and $\mathbf{1}:=(1,1)$.

MIEnKF estimator

■ For a properly selected index set \mathcal{I}, the MIEnKF estimator is defined by

$$
\mu_{n}^{\mathrm{MI}}[\varphi]:=\sum_{\ell \in \mathcal{I}} \sum_{m=1}^{M_{\ell}} \frac{\boldsymbol{\Delta} \mu_{n}^{\ell, m}[\varphi]}{M_{\ell}},
$$

where $\left\{\boldsymbol{\Delta} \mu_{n}^{\ell, m}[\varphi]\right\}_{m=1}^{M_{\ell}}$ are i.i.d. copies of $\boldsymbol{\Delta} \mu_{n}^{\ell}[\varphi]$, and $\left\{\boldsymbol{\Delta} \mu_{n}^{\ell, m}[\varphi]\right\}_{(\ell, m)}$ are mutually independent.
■ Note that multi-index here refers to a two-index method, consisting of a hierarchy of EnKF estimators that are coupled in two degrees of freedom: time discretization $N_{\ell_{1}}$ and ensemble size $P_{\ell_{2}}$.
■ Sampling four-coupled EnKF estimators may lead to a stronger variance reduction than that achieved by pairwise-coupling in MLEnKF.

MIEnKF algorithm

Prediction step

- Given the four-coupled $\left(\hat{v}_{n, i}^{\ell}, \hat{v}_{n, i}^{\ell-e_{1}}, \hat{v}_{n, i}^{\ell-e_{2}}, \hat{v}_{n, i}^{\ell-1}\right)$ updated states for $i=1, \ldots, P_{\ell_{2}}$, the prediction states are given by

$$
\begin{array}{lr}
v_{n+1, i}^{\ell}=\Psi_{n}^{N_{\ell_{1}}}\left(\hat{v}_{n, i}^{\ell}\right), & v_{n+1, i}^{\ell-\boldsymbol{e}_{1}}=\Psi_{n}^{N_{\ell_{1}-1}}\left(\hat{v}_{n, i}^{\ell-\boldsymbol{e}_{1}}\right), \\
v_{n+1, i}^{\ell-\boldsymbol{e}_{2}}=\Psi_{n}^{N_{\ell_{1}}}\left(\hat{v}_{n, i}^{\ell-e_{2}}\right), & v_{n+1, i}^{\ell-1}=\Psi_{n}^{N_{\ell_{1}-1}}\left(\hat{v}_{n, i}^{\ell-1}\right),
\end{array}
$$

- Compute sample covariances of the following ensembles

$$
\begin{gathered}
C_{n+1}^{\ell}=\overline{\operatorname{Cov}}\left[v_{n+1,1: P_{\ell_{2}}}^{\ell}\right], C_{n+1}^{\ell-\boldsymbol{e}_{1}}=\overline{\operatorname{Cov}}\left[v_{n+1,1: P_{\ell_{2}}}^{\ell-\boldsymbol{e}_{1}}\right] \\
C_{n+1}^{\ell-\boldsymbol{e}_{2}, 1}=\overline{\operatorname{Cov}}\left[v_{n+1,1: P_{\ell_{2}-1}^{\ell-\boldsymbol{e}_{2}}}\right], C_{n+1}^{\ell-\boldsymbol{e}_{2}, 2}=\overline{\operatorname{Cov}}\left[v_{n+1, P_{\ell_{2}-1}^{\ell-1}: P_{\ell_{2}}}^{\ell-\boldsymbol{e}_{2}}\right] \\
C_{n+1}^{\ell-\mathbf{1}, 1}=\overline{\operatorname{Cov}}\left[v_{n+1,1: P_{\ell_{2}-1}^{\ell-1}}\right], C_{n+1,2}^{\ell-\mathbf{1}}=\overline{\operatorname{Cov}}\left[v_{n+1, P_{\ell_{2}-1}+1: P_{\ell_{2}}}^{\ell-1}\right]
\end{gathered}
$$

Update step

- The respective Kalman gains are

$$
\begin{gathered}
K_{n+1}^{\ell}=\mathbf{K}\left(v_{n+1,1: P_{\ell_{2}}}^{\ell}\right), K_{n+1}^{\ell-\boldsymbol{e}_{1}}=\mathbf{K}\left(v_{n+1,1: P_{\ell_{2}}}^{\ell-\boldsymbol{e}_{1}}\right) \\
K_{n+1}^{\ell-\boldsymbol{e}_{2}, 1}=\mathbf{K}\left(v_{n+1,1: P_{\ell_{2}-1}^{\ell}}^{\ell-\boldsymbol{e}_{2}}\right), K_{n+1}^{\ell-\boldsymbol{e}_{2}, 2}=\mathbf{K}\left(v_{n+1, P_{\ell_{2}-1}^{\ell-1}: P_{\ell_{2}}}^{\ell-\boldsymbol{e}_{2}}\right) \\
K_{n+1}^{\ell-\mathbf{1}, 1}=\mathbf{K}\left(v_{n+1,1: P_{\ell_{2}-1}^{\ell-1}}^{\ell-1}\right), K_{n+1}^{\ell-\mathbf{1}, 2}=\mathbf{K}\left(v_{n+1, P_{\ell_{2}-1}+1: P_{\ell_{2}}}^{\ell-1}\right)
\end{gathered}
$$

MIEnKF algorithm

Update step

- The perturbed observations are also particle-wise coupled, so that the updated particle states are:

$$
\left.\begin{array}{l}
\tilde{y}_{n+1, i}^{\ell}=y_{n+1}+\eta_{n+1, i}^{\ell} \\
\hat{v}_{n+1, i}^{\ell}=\left(I-K_{n+1}^{\ell} H\right) v_{n+1, i}^{\ell}+K_{n+1}^{\ell} \tilde{y}_{n+1, i}^{\ell}, \\
\hat{v}_{n+1, i}^{\ell-e_{1}}=\left(I-K_{n+1}^{\ell-\boldsymbol{e}_{1}} H\right) v_{n+1, i}^{\ell-\boldsymbol{e}_{1}}+K_{n+1}^{\ell-\boldsymbol{e}_{1}} \tilde{y}_{n+1, i}^{\ell},
\end{array}\right\}
$$

for $i=1, \ldots, P_{\ell_{2}},\left\{\eta_{n+1, i}^{\ell_{2}}\right\}_{i=1}^{P_{\ell_{2}}}$ are i.i.d. with $\eta_{n+1,1}^{\ell_{2}} \sim N(0, \Gamma)$,

$$
\left.\begin{array}{rl}
\hat{v}_{n+1, i}^{\ell-\boldsymbol{e}_{2}, 1} & =\left(I-K_{n+1}^{\ell-\boldsymbol{e}_{2}, 1} H\right) v_{n+1, i}^{\ell-\boldsymbol{e}_{2}}+K_{n+1}^{\ell-\boldsymbol{e}_{2}, 1} \tilde{y}_{n+1, i}^{\ell}, \\
\hat{v}_{n+1, i}^{\ell-\boldsymbol{e}_{2}, 2} & =\left(I-K_{n+1}^{\ell-\boldsymbol{e}_{2}, 2} H\right) v_{n+1, i+P_{\ell_{2}-1}^{\ell-\boldsymbol{e}_{2}}}+K_{n+1}^{\ell-\boldsymbol{e}_{2}, 2} \tilde{y}_{n+1, i+P_{\ell_{2}-1}^{\ell}}^{\ell}, \\
\hat{v}_{n+1, i}^{\ell-\mathbf{1}, 1} & =\left(I-K_{n+1}^{\ell-1,1} H\right) v_{n+1, i}^{\ell-\mathbf{1}}+K_{n+1}^{\ell-\mathbf{1}, 1} \tilde{y}_{n+1, i}^{\ell}, \\
\hat{v}_{n+1, i}^{\ell-1,2} & =\left(I-K_{n+1}^{\ell-\mathbf{1}, 2} H\right) v_{n+1, i+P_{\ell_{2}-1}}^{\ell-\mathbf{1}}+K_{n+1}^{\ell-1,2} \tilde{y}_{n+1, i+P_{\ell_{2}-1}^{\ell}}^{\ell},
\end{array}\right\}
$$

for $i=1, \ldots, P_{\ell_{2}-1}$.

Prediction

i.i.d copies

Σ overall $\ell \in I$

$$
\left\langle\mu_{\mathrm{n}}^{\mathrm{MI}}[\varphi]\right\rangle
$$

MIEnKF complexity

Assumption

For $N_{\ell_{1}} \approx 2^{\ell_{1}}, P_{\ell_{2}} \approx 2^{\ell_{2}} \quad \forall \ell \in \mathbb{N}_{0}^{2}$ and $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}$, the four-coupled
EnKF estimator $\boldsymbol{\Delta} \mu_{n}^{\ell}[\varphi]$ satisfies:

$$
\begin{aligned}
\left|\mathbb{E}\left[\boldsymbol{\Delta} \mu_{n}^{\ell}[\varphi]\right]\right| & \lesssim N_{\ell_{1}}^{-1} P_{\ell_{2}}^{-1}, \\
\mathbb{V}\left[\Delta \mu_{n}^{\ell}[\varphi]\right] & \lesssim N_{\ell_{1}}^{-2} P_{\ell_{2}}^{-2}, \\
\operatorname{Cost}\left(\boldsymbol{\Delta} \mu_{n}^{\ell}[\varphi]\right) & \approx N_{\ell_{1}} P_{\ell_{2}} .
\end{aligned}
$$

Theorem 1 (MIEnKF complexity)

Under sufficient regulatory assumptions, for any $\epsilon>0$ and $n \geq 0$, the index set $\mathcal{I}=\left\{\ell \in \mathbb{N}_{0}^{2} \mid \ell_{1}+\ell_{2} \leq L\right\}$, with $L \simeq\left\lceil\log \epsilon^{-1}+\log \log \epsilon^{-1}\right\rceil$ and $M_{\ell} \bar{\sim} \epsilon^{-2} N_{\ell_{1}}^{-3 / 2} P_{\ell_{2}}^{-3 / 2}$ ensures that

$$
\begin{gathered}
\mathbb{E}\left[\left(\mu_{n}^{\mathrm{MI}}[\varphi]-\mu_{n}^{\infty, \infty}[\varphi]\right)^{2}\right]=\mathcal{O}\left(\epsilon^{2}\right) \\
\operatorname{Cost}\left(\mu_{\mathrm{n}}^{\mathrm{MI}}[\varphi]\right)=\mathcal{O}\left(\epsilon^{-2}\right)
\end{gathered}
$$

Numerical example

■ Again consider nonlinear dynamics with a double well potential

Figure 2: Runtime vs root-MSE for the Qol $\varphi(x)=x$. MIEnKF (solid-asterisked), new MLEnKF (solid-crossed) and EnKF (solid-bulleted).

Comparison of computational costs

Methods	EnKF	New MLEnKF	MIEnKF
MSE	$\mathcal{O}\left(\epsilon^{2}\right)$	$\mathcal{O}\left(\epsilon^{2}\right)$	$\mathcal{O}\left(\epsilon^{2}\right)$
Cost	$\mathcal{O}\left(\epsilon^{-3}\right)$	$\mathcal{O}\left(\epsilon^{-2}\|\log (\epsilon)\|^{3}\right)$	$\mathcal{O}\left(\epsilon^{-2}\right)$

Table 1: Comparison of computational costs versus errors for EnKF, original MLEnKF, new MLEnKF and MIEnKF methods

Conclusion

Conclusion

- Presented different ideas of combining multilevel and multi-index Monte Carlo with EnKF to produce new filtering methods that display efficiency gains over standard single-level EnKF.

Conclusion

- Presented different ideas of combining multilevel and multi-index Monte Carlo with EnKF to produce new filtering methods that display efficiency gains over standard single-level EnKF.
- A new multi-level EnKF method is based on a sample average of independent samples of pairwise-coupled EnKF estimators.
four-coupled EnKF estimators on a multi-index hierarchy of
- Under certain assumptions, the MIEnKF method is proven to be

Conclusion

- Presented different ideas of combining multilevel and multi-index Monte Carlo with EnKF to produce new filtering methods that display efficiency gains over standard single-level EnKF.
- A new multi-level EnKF method is based on a sample average of independent samples of pairwise-coupled EnKF estimators.
- Multi-index EnKF method is based on independent samples of four-coupled EnKF estimators on a multi-index hierarchy of resolution levels.
prominently when more than two degrees of freedom need to be

Conclusion

- Presented different ideas of combining multilevel and multi-index Monte Carlo with EnKF to produce new filtering methods that display efficiency gains over standard single-level EnKF.
- A new multi-level EnKF method is based on a sample average of independent samples of pairwise-coupled EnKF estimators.
- Multi-index EnKF method is based on independent samples of four-coupled EnKF estimators on a multi-index hierarchy of resolution levels.
- Under certain assumptions, the MIEnKF method is proven to be more tractable than EnKF and MLEnKF, and this is also verified numerically.

Conclusion

- Presented different ideas of combining multilevel and multi-index Monte Carlo with EnKF to produce new filtering methods that display efficiency gains over standard single-level EnKF.
- A new multi-level EnKF method is based on a sample average of independent samples of pairwise-coupled EnKF estimators.
- Multi-index EnKF method is based on independent samples of four-coupled EnKF estimators on a multi-index hierarchy of resolution levels.
- Under certain assumptions, the MIEnKF method is proven to be more tractable than EnKF and MLEnKF, and this is also verified numerically.
- We believe that MIEnKF will often outperform alternative methods prominently when more than two degrees of freedom need to be discretized.

References

1 H. Hoel, K. JH Law, and R. Tempone, Multilevel ensemble Kalman filtering, SIAM J. Numer. Anal., 54(3), pp. 1813-1839 (2016).

2 H. Hoel, G. Shaimerdenova, and R. Tempone, Multilevel ensemble Kalman filtering based on a sample average of independent EnKF estimators. Foundations of Data Science 2, 4 (2020), 351.

3 H. Hoel, G. Shaimerdenova, and R. Tempone, Multi-index ensemble Kalman filtering. Preprint, 2021, arXiv:2104.07263

THANK YOU!

Appendix

Figure 3: Double Well problem. Estimates based on $S=10^{6}$ independent runs. Top row: Numerical evidence of weak rate assumption. Bottom row: Similar plots for verifying strong rate assumption.

EnKF convergence

Assumption 1.

For all $p \geq 2$,

$$
\boldsymbol{1}\left\|\Psi^{N}(v)\right\|_{L^{p}\left(\Omega, \mathbb{R}^{d}\right)} \lesssim 1+\|v\|_{L^{p}\left(\Omega, \mathbb{R}^{d}\right)}
$$

$2\left\|\Psi^{N}(u)-\Psi^{N}(v)\right\|_{L^{p}\left(\Omega, \mathbb{R}^{d}\right)} \lesssim\|u-v\|_{L^{p}\left(\Omega, \mathbb{R}^{d}\right)}$,
3 there exists $\alpha>0$ s.t. if

$$
\left|\mathbb{E}\left[\varphi(u)-\varphi\left(v^{N}\right)\right]\right| \lesssim N^{-\alpha} \Longrightarrow\left|\mathbb{E}\left[\varphi(\Psi(u))-\varphi\left(\Psi^{N}\left(v^{N}\right)\right)\right]\right| \lesssim N^{-\alpha}
$$

Theorem. [Le Gland et al. (2009); H.Hoel et al. (2016)] If Assumption 1 holds and $u_{0} \mid Y_{0} \in \cap_{r \geq 2} L^{r}\left(\Omega, \mathbb{R}^{d}\right)$, then for any $\varphi \in \mathbb{F},\left\|\mu_{n}^{N, P}[\varphi]-\mu_{n}^{\infty, \infty}[\varphi]\right\|_{L^{p}(\Omega)} \lesssim P^{-1 / 2}+N^{-\alpha}$.

- In order to achieve $\mathcal{O}(\epsilon)$ accuracy $P \approx \epsilon^{-2}$ and $N \approx \epsilon^{-1 / \alpha}$.
- Then the cost of EnKF is bounded by $\operatorname{Cost}\left(\mu_{n}^{N, P}[\varphi]\right) \approx \epsilon^{-(2+1 / \alpha)}$.

Original MLEnKF - the pairwise coupling

Prediction step

- Simulate pairwise coupled particles

$$
v_{n+1, i}^{\ell-1}=\Psi^{N_{\ell-1}}\left(\hat{v}_{n, i}^{\ell-1}, \omega_{\ell, i}\right), \quad v_{n+1, i}^{\ell}=\Psi^{N_{\ell}}\left(\hat{v}_{n, i}^{\ell}, \omega_{\ell, i}\right)
$$

for $i=1, \ldots, P_{\ell}$ on hierarchy levels $\ell=0,1, \ldots, L$.

- MLMC approximation of prediction covariance:

$$
C_{n+1}^{\mathrm{ML}}=\sum_{\ell=0}^{L} \operatorname{Cov}_{P_{\ell}}\left[v_{n+1}^{\ell}\right]-\operatorname{Cov}_{P_{\ell}}\left[v_{n+1}^{\ell-1}\right]
$$

Update step

For $\ell=0,1, \ldots, L$ and $i=1,2, \ldots, P_{\ell}$,

$$
\begin{aligned}
\tilde{y}_{n+1, i}^{\ell} & =y_{n+1}+\gamma_{n+1, i}^{\ell}, \quad \text { i.i.d. } \gamma_{n+1, i}^{\ell} \sim N(0, \Gamma) \\
\hat{v}_{n+1, i}^{\ell-1} & =\left(I-K_{n+1}^{\mathrm{ML}} H\right) v_{n+1, i}^{\ell-1}+K_{n+1}^{\mathrm{ML}} \tilde{y}_{n+1, i}^{\ell}, \\
\hat{v}_{n+1, i}^{\ell} & =\left(I-K_{n+1}^{\mathrm{ML}} H\right) v_{n+1, i}^{\ell}+K_{n+1}^{\mathrm{ML}} \tilde{y}_{n+1, i}^{\ell}, \\
\text { where } \quad K_{n+1}^{\mathrm{ML}} & =C_{n+1}^{\mathrm{ML}} H^{\top}\left(H C_{n+1}^{\mathrm{ML}} H^{\top}+\Gamma\right)^{-1} .
\end{aligned}
$$

Original MLEnKF accuracy vs. cost

Theorem. [H.Hoel et al., 2016]

If, in addition to Assumption 1 for EnKF, there exists a $\beta>0$ such that for all $p \geq 2$ and $v \in \cap_{r \geq 2} L^{r}\left(\Omega, \mathbb{R}^{d}\right)$,

$$
\left\|\Psi^{N_{\ell}}(v)-\Psi^{N_{\ell-1}}(v)\right\|_{L^{p}(\Omega)} \lesssim\left(1+\|v\|_{L^{p}(\Omega)}\right) N_{\ell}^{-\beta / 2} .
$$

Then, for any $u_{0} \mid Y_{0} \in \cap_{r \in \mathbb{N}} L^{r}(\Omega), \varphi \in \mathbb{F}$ and $\epsilon>0$, there exists an $L(\epsilon)>0$ and $\left\{P_{\ell}\right\}_{\ell=0}^{L}$ such that

$$
\left\|\mu_{n}^{\mathrm{ML}}(\varphi)-\mu_{n}^{\infty, \infty}(\varphi)\right\|_{p} \lesssim \epsilon .
$$

And

$$
\operatorname{Cost}\left(\mu_{n}^{\mathrm{ML}}(\varphi)\right) \lesssim \begin{cases}\left(|\log (\epsilon)|^{1-n} \epsilon\right)^{-2}, & \text { if } \beta>1, \\ \left(|\log (\epsilon)|^{1-n} \epsilon\right)^{-2}|\log (\epsilon)|^{3}, & \text { if } \beta=1, \\ \left(|\log (\epsilon)|^{1-n} \epsilon\right)^{-\left(2+\frac{1-\beta}{\alpha}\right),}, & \text { if } \beta<1\end{cases}
$$

! Compare with EnKF, where $\operatorname{Cost}\left(\mu_{n}^{N, P}(\varphi)\right) \approx \epsilon^{-\left(2+\frac{1}{\alpha}\right)}$.

Assumptions for new MLEnKF

Assumption 2.

Let $|\kappa|_{1}:=\sum_{i=1}^{d} \kappa_{i}$ for any $\kappa \in \mathbb{N}_{0}^{d}$. For all $\ell \in \mathbb{N}_{0} \cup\{\infty\}$ and $p \geq 2$,
(i) for all $|\kappa|_{1} \leq 1$,

$$
\left\|\partial^{\kappa} \Psi^{N_{\ell}}(u)\right\|_{L^{p}\left(\Omega, \mathbb{R}^{d}\right)} \lesssim\left(1+\|u\|_{L^{p}\left(\Omega, \mathbb{R}^{d}\right)}\right),
$$

(ii) for all $|\kappa|_{1}=2$,

$$
\left\|\partial^{\kappa} \Psi^{N_{\ell}}(u)\right\|_{L^{2 p}\left(\Omega, \mathbb{R}^{d}\right)} \lesssim\left(1+\|u\|_{L^{2 p}\left(\Omega, \mathbb{R}^{d}\right)}\right)
$$

(iii) for all $|\kappa|_{1} \leq 1$,

$$
\left\|\partial^{\kappa} \Psi^{N_{\ell+1}}(u)-\partial^{\kappa} \Psi^{N_{\ell}}(u)\right\|_{L^{p}\left(\Omega, \mathbb{R}^{d}\right)} \lesssim\left(1+\|u\|_{L^{p}\left(\Omega, \mathbb{R}^{d}\right)}\right) N_{\ell}^{-\beta / 2} .
$$

Convergence of new MLEnKF

Theorem. (MLEnKF convergence)

If Assumptions 1 and 2 hold, then for any $u_{0} \mid Y_{0} \in \cap_{r \in \mathbb{N}} L^{r}(\Omega), \varphi \in \mathbb{F}$, $n \geq 0, p \geq 2$ and $\epsilon>0$, there exists an $L(\epsilon)>0$ and triplet of sequences $\left\{P_{\ell}\right\},\left\{N_{\ell}\right\},\left\{M_{\ell}\right\}$ such that

$$
\left\|\mu_{n}^{\mathrm{ML}^{\mathrm{NEW}}}[\varphi]-\mu_{n}^{\infty, \infty}[\varphi]\right\|_{p} \lesssim \epsilon
$$

$\operatorname{Cost}\left(\mu_{n}^{\mathrm{ML}^{\text {NEW }}}\right) \lesssim \begin{cases}\epsilon^{-2} & \text { if } \beta>1, \alpha>1, \\ \epsilon^{-2}|\log (\epsilon)|^{3} & \text { if }(\beta>1, \alpha=1) \text { or }(\beta=1, \alpha \geq 1), \\ \epsilon^{-(1+1 / \alpha)} & \text { if }(\beta \geq 1, \alpha<1) \text { or }(\beta<1, \alpha \leq \beta), \\ \epsilon^{-(2+(1-\beta) / \alpha)} & \text { if } \beta<1, \alpha>\beta .\end{cases}$
with the configuration $P_{\ell} \approx 2^{\ell}, N_{\ell} \approx 2^{\text {sl }}$ for any $s>0$.
! Compare with old MLEnKF, where cost is

$$
\operatorname{Cost}\left(\mu_{n}^{\mathrm{ML}}[\varphi]\right) \lesssim \begin{cases}\left(|\log (\epsilon)|^{1-n} \epsilon\right)^{-2}, & \text { if } \beta>1 \\ \left(|\log (\epsilon)|^{1-n} \epsilon\right)^{-2}|\log (\epsilon)|^{3}, & \text { if } \beta=1, \\ \left(|\log (\epsilon)|^{1-n} \epsilon\right)^{-\left(2+\frac{1-\beta}{\alpha}\right),}, & \text { if } \beta<1\end{cases}
$$

Choosing the index set \mathcal{I}

- We assume $\mathcal{I}=\left\{\ell \in \mathbb{N}_{0}^{2} \mid \ell_{1}+\ell_{2} \leq L\right\}$.

Figure 4: Illustration of multi-index set \mathcal{I}.
■ The problem of optimizing the set \mathcal{I} may be recast as a knapsack optimization problem.

DMFEnKF algorithm

- The initial updated density $\rho_{v_{0}}=\rho_{u_{0} \mid Y_{0}}$, the number of time steps N_{t}, the number of spatial steps N_{x}, the discretization interval [x_{0}, x_{1}], the simulation length \mathcal{N}.
- The prediction and updated density, $\rho_{\bar{v}_{n}}$ and $\rho_{\hat{v}_{n}}$, respectively.
$\Delta t=\frac{1}{N_{t}}, \Delta x=\frac{x_{1}-x_{0}}{N_{x}}$.
For $\mathrm{n}=1: \mathcal{N}$
1 Compute the prediction density $\rho_{\bar{v}_{n}}(x)=\mathcal{S}^{1} \rho_{V_{n-1}}$ by a numerical method (e.g., Crank-Nicolson) with the discretization steps $(\Delta t, \Delta x)$.
2 Compute the prediction covariance $\bar{C}_{n}=\int x^{2} \rho_{\bar{v}_{n}}(x) d x-\left(\int x \rho_{\bar{v}_{n}}(x) d x\right)^{2}$ using a quadrature rule.
3 Compute the Kalman gain $\bar{K}_{n}=\bar{C}_{n} H^{\top}\left(H \bar{C}_{n} H^{\top}+\Gamma\right)^{-1}$.
4 Compute the updated density $\rho_{\hat{v}_{n}}=\rho_{X} * \rho_{Y}$ by discrete convolution of the two functions represented on the spatial mesh.

Bayes filter vs MFEnKF

Illustration of contracting property: given nonlinear Ψ defined by the SDE $d u=-(u+\pi \cos (\pi u / 5) / 5) d t+\sigma d W$ and having different update densities at time n, we have almost identical prediction densities at time $n+1$ for both Bayes filter and MFEnKF.

[^0]: MLEnKF (New, 2020):

