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What are observation errors?

In data assimilation, we consider
the observation equation

y = H(x) + ε.

We assume ε is unbiased,
E(ε) = 0, and has covariance R
such that

Rij = E(εiεj).
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Where do observation errors come from?
The error vector, ε, contains errors from four main sources: Janjić
et al (2017)

Instrument noise Observation pre-processing

Observation operator error Scale mis-match
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Why do we want to estimate observation
uncertainty?
• Only use 5% of some obs types due to thinning

• Improve analysis accuracy and forecast skill (e.g., Stewart et al.
2013; Weston et al., 2014)

• Changes to scales of observation information content in
analysis depending on both the prior and observation error
correlations (Fowler et al, 2018)
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Estimating observation uncertainty

• In DA, observation uncertainty depends on YOUR observation
operator, model resolution etc and is state dependent (Waller et
al., 2014; Janjić et al, 2018)

• Approximations are still useful and can give improved forecast
skill (Healy and White, 2005; Stewart et al, 2013)
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How can we estimate observation uncertainty?

• Error inventory/Metrological approach

• Collocation with other observations (but rep. error?)
• Diagnosis from assimilation (review by Tandeo et al, 2020)
◦ Moment based methods (e.g., using innovation and residual

statistics, Desroziers et al, 2005)
◦ Likelihood based methods (e.g., expectation maximization, Pulido

et al, 2018)
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DBCP diagnostic (Desroziers et al 2005)

• Easy to compute from
standard innovations and
analysis residuals

• Proven useful in NWP

Early IASI example (Stewart et al.,
2009, 2014.)

• Non-symmetric structure
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DBCP diagnostic, Desroziers et al., (2005)
Use the background innovations and analysis residuals:

do
b = y−H(xb),

do
a = y−H(xa).

Taking the statistical expectation, and after some calculations...

E [do
ado

b
T
] = R̃(HB̃HT + R̃)

−1
(HBHT + R) = Re,

where
• Re is the estimated observation error covariance matrix
• B and R are the exact background and observation covariance

matrices.
• R̃ and B̃ are the assumed statistics used in the assimilation.
If R̃ = R and B̃ = B, then

E [do
ado

b
T
] = R.
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What are the pitfalls?

10 of 32



Sensitivity to Assumed Statistics (Waller et al,
2016 QJ)

E [do
ado

b
T
] = R̃(HB̃HT + R̃)

−1
(HBHT + R) = Re,

Example: True background error stats, B̃ = B; diagonal R̃

Re has an underestimated variance and correlation lengthscale,
but is a better approximation than R̃.
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Doppler radar winds and Met Office UKV
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Horizontal Correlations, sensitivity to B̃
Waller et al. (2016) MWR

• Increasing variance and lengthscale in B̃ reduces variance and
lengthscale in diagnosed Re.

• Consistent with Waller et al (2016) QJ theory.
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DBCP and Local DA (Waller et al, 2017)

• DBCP does not always give the right answers. Must only
calculate with the right set of points.

Regions of observation influence
The region of influence of an
observation is the set of analysis states
that are updated in the assimilation
using the observation.

Grid points (pluses) and observations
(dots), with observations coloured with
corresponding regions of observation
influence (shaded coloured circles).
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DBCP and Local DA Cont(Waller et al, 2017)

The domain of dependence of an
observation yi is the set of elements of
the model state that are used to
calculate the model equivalent of yi

Example: The coloured squares around
grid points select the points that would
be utilized by the observation operator
for the observation of the
corresponding colour.

The correlation between the errors of observations yi and yj can
be estimated using the DBCP diagnostic only if the domain of de-
pendence for observation yi lies within the region of influence of
observation yj .
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What are the possibilities?
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Comparison of approaches (Mirza et al, 2021)
• Mode-S EHS temperatures - errors from lack of precision in

Mach number
• Diagnosed std (black-dashed-squares) compare well with

metrological estimates (red diamonds)
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Identifying sources of error - Examples
Waller et al (2016) Rem. sens. Bauernschubert et al (2019)

SEVIRI interchannel error covari-
ances over different subdomains

Doppler radar wind error std

Land-sea QC issue Radars 10169 and 10204 contam-
inated by wind turbines and ship
tracks
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Using diagnosed covariances in operational
systems

Diagnosed interchannel observation error correlations for
IASI (for the Met Office global model)

Problems: Diagnosed
covariances typically
• Not symmetric
• Not positive definite
• Variances too small
• Ill-conditioned

Can prevent convergence of variational minimization (Weston et
al. 2014)
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Convergence of minimization

The sensitivity and accuracy of the solution of the minimization
depend on the condition number of the Hessian

κ(S) =
λmax(S)
λmin(S)

,

where λ denotes the eigenvalue and the Hessian is

S = B−1 + HT R−1H.

Tabeart et al. (2018) showed that κ(S) increases with λmin(R).

Tabeart et al. (2021) showed similar results with pre-conditioned
form (control var transform).
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Reconditioning R

To improve the conditioning of R (and S ) we alter the
eigenstructure of R so as to obtain a specified condition number
for the modified covariance matrix by e.g.,

• Ridge regression - add constant to all diagonal elements.
• Eigenvalue modification: increase the smallest eigenvalues of

R to a threshold value that ensures the desired condition
number, keeping the rest unchanged.
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Reconditioning results with IASI inter-channel
error matrix (Tabeart et al, 2020)

• Ridge regression method increases standard deviations more
than minimum eigenvalue method

• Ridge regression method decreases correlations, but minimum
eigenvalue method has non-uniform behaviour
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Experiments with Ridge Regression in Met Office
1D-Var (Tabeart et al. 2020)

• Reconditioning increases convergence speed

• Lots of examples of improved forecast skill from taking account
of interchannel error covariances (Met Office, ECMWF, NRL,
ECCC, NASA, NCEP, Meteo France...)
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Spatial correlations

We need to be able to compute
the matrix-vector product

R−1v.

This might require expensive
communication between
processors.
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Doppler radar wind assimilation (Simonin et al, 2019)
• Assume only horizontal correlations within a family
• R is derived on-the-fly (different observations each assimilation)
• Correlation matrix is determined by calculating the distance

between each pair of observations in the family

Cij = exp

(
−Dij

Lr

)
• Lengthscale determined by fitting to diagnosed horizontal

correlations
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Experiments

Three experiments run for 20 days (3 hourly cycling 3D-Var, UKV
1.5km model)

Control: 6km thinning with diagonal R (∼ 2000 radar obs per
cycle)

Corr-R-6km: 6km thinning with correlated R (∼ 2000 radar obs
per cycle)

Corr-R-3km: 6km thinning with correlated R (∼ 8000 radar obs
per cycle)
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Results
• No significant difference in iteration count or wall-clock time

• Corr-R-3km increments are smaller scale and smaller
magnitude

• Parameters for experiments have not been tuned, but most
O-Bs show a small benefit from the introduction of correlations.

σO−B,exp

σO−B,ctrl
− 1[%]
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O-B Forecast skill cont

Work underway to implement in 4D-Var.28 of 32



Conclusions
• It is important to be able to account for observation error

correlations
◦ Avoid thinning (high resolution forecasting)
◦ Improved forecast skill score

• First we need to estimate correlations
◦ Desroziers et al (2005) diagnostic can be used with caution
◦ Can understand sensitivity to the assumed stats in the assimilation

(Waller et al. 2016a)
◦ Can help us to understand sources of correlations (e.g., Waller et

al 2016b)
• Then we need to be able to account for the errors in the

assimilation
◦ Sample matrices need reconditioning
◦ Appropriate software needs to be in place to deal efficiently with

full matrices
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Janjić, T., Bormann, N., Bocquet, M., Carton, J.A., Cohn, S.E., Dance, S.L., Losa, S.N., Nichols, N.K., Potthast, R., Waller,
J. and Weston, P., 2018. On the representation error in data assimilation. Quarterly Journal of the Royal Meteorological
Society, 144(713), pp.1257-1278.

Menard R. 2016. Error covariance estimation methods based on analysis residuals: theoretical foundation and
convergence properties derived from simplified observation networks. Quarterly Journal of the Royal Meteorological
Society 142: 257-273.

Mirza, A.K., S.L. Dance, G. G. Rooney, D. Simonin, E. K. Stone and J. A. Waller Comparing diagnosed observation
uncertainties with independent estimates: a case study using aircraft-based observations and a convection-permitting
data assimilation system. Submitted

Pulido, M., P. Tandeo, M. Bocquet, A. Carrassi, and M. Lucini, 2018: Stochastic parameterization identification using
ensemble Kalman filtering combined with maximum likelihood methods. Tellus A: Dynamic Meteorology and
Oceanography, 70 (1), 1442 099.

L. M. Stewart, J. Cameron, S. L. Dance, S. English, J. R. Eyre, and N. K. Nichols. Observation error correlations in IASI
radiance data. Technical report, University of Reading, 2009. Mathematics reports series,
www.reading.ac.uk/web/FILES/maths/obs_error_IASI_radiance.pdf.

L. M. Stewart, S. L. Dance, N. K. Nichols, J. R. Eyre, and J. Cameron. Estimating interchannel observation-error
correlations for IASI radiance data in the Met Office system. Quarterly Journal of the Royal Meteorological Society,
140:1236-1244, 2014. doi: 10.1002/qj.2211.

Stewart, L.M., Dance, S.L., Nichols, N.K. (2013) Data assimilation with correlated observation errors: experiments with a
1-D shallow water model, Tellus A doi: 10.3402/tellusa.v65i0.19546

30 of 32



References Page 2

J. M. Tabeart, S. L. Dance, S. A. Haben, A. S. Lawless, N. K. Nichols, and J. A. Waller (2018) The conditioning of least
squares problems in variational data assimilation. Numerical Linear Algebra with Applications doi:10.1002/nla.2165

Jemima M. Tabeart Sarah L. Dance Amos S. Lawless Stefano Migliorini Nancy K. Nichols Fiona Smith and Joanne A.
Waller (2020) The impact of using reconditioned correlated observation-error covariance matrices in the Met Office
1D-Var system. QJR Meteorol Soc.146: 1372-1390. doi:10.1002/qj.3741

Jemima M. Tabeart, Sarah L. Dance, Amos S. Lawless, Nancy K. Nichols & Joanne A. Waller (2020) Improving the
condition number of estimated covariance matrices, Tellus A: Dynamic Meteorology and Oceanography, 72:1, 1-19 doi:
10.1080/16000870.2019.1696646

Jemima M. Tabeart, Sarah L. Dance, Amos S. Lawless, Nancy K. Nichols, Joanne A. Waller (2021) The conditioning of
least squares problems in preconditioned variational data assimilation, submitted

Tandeo, P., P. Ailliot, M. Bocquet, A. Carrassi, T. Miyoshi, M. Pulido, and Y. Zhen, 2020: A Review of Innovation-Based
Methods to Jointly Estimate Model and Observation Error Covariance Matrices in Ensemble Data Assimilation. Mon.
Wea. Rev., 148, 3973-3994.

Waller JA, Ballard SP, Dance SL, Kelly G, Nichols NK, Simonin D. 2016. Diagnosing horizontal and inter-channel
observation-error correlations for SEVIRI observations using observation-minus-background and
observation-minus-analysis statistics. Remote Sens. 8: 581, doi: 10.3390/rs8070581.

Waller, J. A., Dance, S. L. and Nichols, N. K. (2016) Theoretical insight into diagnosing observation error correlations using
observation-minus-background and observation-minus-analysis statistics. Q.J.R. Meteorol. Soc. doi: 10.1002/qj.2661

Waller, J. A., Simonin, D., Dance, S. L., Nichols, N. K. and Ballard, S. P. (2016b) Diagnosing observation error correlations
for Doppler radar radial winds in the Met Office UKV model using observation-minus-background and
observation-minus-analysis statistics. Monthly Weather Review. doi: 10.1175/MWR-D-15-0340.1

Waller, J.A., Dance, S.L. and Nichols, N.K. (2017), On diagnosing observation-error statistics with local ensemble data
assimilation. Q.J.R. Meteorol. Soc., 143: 2677-2686. doi:10.1002/qj.3117

P. P. Weston, W. Bell, and J. R. Eyre. Accounting for correlated error in the assimilation of high-resolution sounder data.
Quarterly Journal of the Royal Meteorological Society, 2014. doi: 10.1002/qj.2306.

31 of 32



Iteration
• Iteration converges to the correct estimate only when assumed

B̃ is correct (Menard, 2016; Bathmann, 2018)
• More often, the first iterate is used. Experience shows little

difference between iterates.

Bathmann(2018) a) First iterate b) Sixth iterate correlation matrix
for IASI with NCEP global system
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