A generalisation of the updating step in EnKF

Håkon Tjelmeland and Margrethe K. Loe Department of Mathematical Sciences Norwegian University of Science and Technology

> EnKF Workshop 2021 June 11th 2021

Talk outline

- \star The state-space model
- * Ensemble Kalman filter (EnKF)
 - model and algorithm
 - simulation example
 - identify some issues
- \star An improved model (and algorithm)
 - modified model
 - modified updating algorithm
 - simulation example (revisited)
- ⋆ Closing remarks
- * Note: We do not consider
 - variance inflation
 - localisation
 - computational efficiency

The state-space model

* State-space model

★ Model components

$$egin{aligned} & x_1 \sim p(x_1) \ & x_t | x_{t-1} \sim p(x_t | x_{t-1}) \ & y_t | x_t \sim \mathsf{N}(\mathsf{H} x_t, \mathsf{R}) \end{aligned}$$

 \star Goal: Find/represent the filtering distribution

$$p(x_t|y_{1:t})$$

- represent $p(x_t|y_{1:t})$ by an ensemble $\{x_t^1, \ldots, x_t^M\}$

Ensemble Kalman filter — recursive solution

* From $p(x_t|y_{1:t})$ to $p(x_{t+1}|y_{1:t+1})$ in to steps

Ensemble Kalman filter — recursive solution

* From $p(x_t|y_{1:t})$ to $p(x_{t+1}|y_{1:t+1})$ in to steps

* From now on: remove the time index notation

* Assumed models when updating \tilde{x}^m to x^m (new data: y)

 \star First assumed model

$$\begin{split} \widetilde{x}^{1}, \dots, \widetilde{x}^{M} | \theta \stackrel{\text{iid}}{\sim} \mathsf{N}(\mu, \Sigma) \\ - \theta &= (\mu, \Sigma) \\ - \widehat{\theta} &= (\widehat{\mu}, \widehat{\Sigma}): \text{ empirical quantities} \end{split}$$

* Assumed models when updating \tilde{x}^m to x^m (new data: y)

 \star Second assumed model

$$\begin{split} \widetilde{x}^{m}, x | \widehat{\theta} \stackrel{\text{iid}}{\sim} \mathsf{N}(\widehat{\mu}, \widehat{\Sigma} \\ y | x \sim \mathsf{N}(Hx, R) \end{split}$$

$$\star \text{ Require: } x^{m} | \widehat{\theta}, y \stackrel{\text{d}}{=} x | \widehat{\theta}, y \end{split}$$

* Assumed models when updating \tilde{x}^m to x^m (new data: y)

 \star Second assumed model

$$\widetilde{x}^m, x | \widehat{ heta} \stackrel{ ext{id}}{\sim} \mathsf{N}(\widehat{\mu}, \widehat{\Sigma})$$
 $y | x \sim \mathsf{N}(Hx, R)$

★ Require: $x^m | \hat{\theta}, y \stackrel{d}{=} x | \hat{\theta}, y$ ★ Stochastic EnKF:

$$x^{m} = \widetilde{x}^{m} + K(y + \varepsilon - H\widetilde{x}^{m})$$

where $K = \widehat{\Sigma}H^{T}(H\widehat{\Sigma}H^{T} + R)^{-1}$ and $\varepsilon \sim N(0, R)$

* Assumed models when updating \tilde{x}^m to x^m (new data: y)

 \star Second assumed model

$$\widetilde{x}^m, x | \widehat{ heta} \stackrel{ ext{id}}{\sim} \mathsf{N}(\widehat{\mu}, \widehat{\Sigma}) \ y | x \sim \mathsf{N}(Hx, R)$$

* Require: $x^{m}|\hat{\theta}, y \stackrel{d}{=} x|\hat{\theta}, y$ * Deterministic EnKF (square root filter)

$$x^m = \widehat{\mu} + K(y - H\widehat{\mu}) + B(\widetilde{x}^m - \widetilde{\mu})$$

where $B\widehat{\Sigma}B^T = (\mathbb{I} - KH)\widetilde{\Sigma}$

- * Use an example introduced in Myrseth and Omre (2010)
- * State vector x_t is a vector of size 100
- $\star~x_1 \sim \mathsf{N}(0,\Sigma),$ exponential correlation function
- * Forward function $(p(x_{t+1}|x_t))$ is deterministic
 - linear: smoothing for ten nodes
 - (non-linear example)
- * Likelihood, $y_n | x_n \sim N(x_n, 20\mathbb{I})$

- * Use an example introduced in Myrseth and Omre (2010)
- * State vector x_t is a vector of size 100
- $\star~x_1 \sim \mathsf{N}(0,\Sigma),$ exponential correlation function
- * Forward function $(p(x_{t+1}|x_t))$ is deterministic
 - linear: smoothing for ten nodes
 - (non-linear example)
- * Likelihood, $y_n | x_n \sim N(x_n, 20\mathbb{I})$

- * Use an example introduced in Myrseth and Omre (2010)
- * State vector x_t is a vector of size 100
- $\star~x_1 \sim \mathsf{N}(0,\Sigma),$ exponential correlation function
- * Forward function $(p(x_{t+1}|x_t))$ is deterministic
 - linear: smoothing for ten nodes
 - (non-linear example)
- * Likelihood, $y_n | x_n \sim N(x_n, 20\mathbb{I})$

- * Use an example introduced in Myrseth and Omre (2010)
- * State vector x_t is a vector of size 100
- $\star~x_1 \sim \mathsf{N}(0,\Sigma),$ exponential correlation function
- * Forward function $(p(x_{t+1}|x_t))$ is deterministic
 - linear: smoothing for ten nodes
 - (non-linear example)
- * Likelihood, $y_n | x_n \sim N(x_n, 20\mathbb{I})$

- * Use an example introduced in Myrseth and Omre (2010)
- * State vector x_t is a vector of size 100
- $\star~x_1 \sim \mathsf{N}(0,\Sigma)$, exponential correlation function
- * Forward function $(p(x_{t+1}|x_t))$ is deterministic
 - linear: smoothing for ten nodes
 - (non-linear example)
- * Likelihood, $y_n | x_n \sim N(x_n, 20\mathbb{I})$

- * Use an example introduced in Myrseth and Omre (2010)
- * State vector x_t is a vector of size 100
- $\star~x_1 \sim \mathsf{N}(0,\Sigma)$, exponential correlation function
- * Forward function $(p(x_{t+1}|x_t))$ is deterministic
 - linear: smoothing for ten nodes
 - (non-linear example)
- * Likelihood, $y_n | x_n \sim N(x_n, 20\mathbb{I})$

- * Use an example introduced in Myrseth and Omre (2010)
- * State vector x_t is a vector of size 100
- $\star~x_1 \sim \mathsf{N}(0,\Sigma),$ exponential correlation function
- * Forward function $(p(x_{t+1}|x_t))$ is deterministic
 - linear: smoothing for ten nodes
 - (non-linear example)
- * Likelihood, $y_n | x_n \sim N(x_n, 20\mathbb{I})$

Issues with the EnKF

 \star Recall: Underlying models for the EnKF updating of \widetilde{x}^m to x^m

- ★ Issues:
 - uncertainty in $\widehat{\theta}$ is ignored
 - + Myrseth and Omre (2010), Tsyrulnikov and Rakitko (2017)
 - the information in y about θ is ignored
 - + discussed in Myrseth and Omre (2010)
 - the information in \widetilde{x}^m is used two times
 - + and inconsistently?

Propose new model for the updating step

 \star Recall: Standard EnKF model for updating \widetilde{x}^m to x^m

 \star Propose to base update on a merged model

Propose new model for the updating step

 $\star\,$ Propose to base update on a merged model

★ Assumed model:

$$\begin{split} \widetilde{x}^{1}, \dots, \widetilde{x}^{M}, x | \theta \stackrel{\text{iid}}{\sim} \mathsf{N}(\mu, \Sigma) \\ \theta &= (\mu, \Sigma) \sim \mathsf{NIW}(\mu_{0}, \lambda, \Psi, \nu) \\ y | x \sim \mathsf{N}(Hx, R) \end{split}$$

* Require: $x^m | \widetilde{x}^{-m}, y \stackrel{d}{=} x | \widetilde{x}^{-m}, y$

Class of possible of update procedures

* Require:
$$x^m | \widetilde{x}^{-m}, y \stackrel{d}{=} x | \widetilde{x}^{-m}, y$$

 \star Class of possible solutions:

$$\theta = (\mu, \Sigma) \sim f(\theta | \tilde{x}^{-m}, y)$$
$$x^{m} = B(\tilde{x}^{m} - \mu) + \mu + K(y - H\mu) + \varepsilon$$

where

$$arepsilon \sim \mathsf{N}(0,S) \hspace{1mm} ext{and} \hspace{1mm} S = (\mathbb{I} - \mathcal{K}\mathcal{H})\Sigma - B\Sigma B^{T} \geq 0$$

Class of possible of update procedures

* Require:
$$x^m | \widetilde{x}^{-m}, y \stackrel{d}{=} x | \widetilde{x}^{-m}, y$$

 \star Class of possible solutions:

$$\begin{aligned} \theta &= (\mu, \Sigma) \sim f(\theta | \tilde{x}^{-m}, y) \\ x^m &= B(\tilde{x}^m - \mu) + \mu + K(y - H\mu) + \varepsilon \end{aligned}$$

where

$$\varepsilon \sim \mathsf{N}(0, S)$$
 and $S = (\mathbb{I} - \mathcal{K}\mathcal{H})\Sigma - B\Sigma B^T \ge 0$

- ★ Three special cases:
 - S = 0: square root filter, many possible *B*'s
 - $B = \mathbb{I} KH$: ensemble Kalman filter update
 - B = 0: sample x^m independently of \tilde{x}^m

Class of possible of update procedures

* Require:
$$x^m | \widetilde{x}^{-m}, y \stackrel{d}{=} x | \widetilde{x}^{-m}, y$$

 $\star\,$ Class of possible solutions:

$$\begin{aligned} \theta &= (\mu, \Sigma) \sim f(\theta | \widetilde{x}^{-m}, y) \\ x^m &= B(\widetilde{x}^m - \mu) + \mu + K(y - H\mu) + \varepsilon \end{aligned}$$

where

$$\varepsilon \sim \mathsf{N}(0, S)$$
 and $S = (\mathbb{I} - KH)\Sigma - B\Sigma B^T \ge 0$

- ★ Three special cases:
 - S = 0: square root filter, many possible *B*'s
 - $B = \mathbb{I} KH$: ensemble Kalman filter update
 - B = 0: sample x^m independently of \tilde{x}^m
- * What is "the best" (B, S)?

Optimality criterion

- * What is the best (B, S)?
- \star If the assumed model is correct:
 - all allowed choices of (B, S) are equally good!
- $\star\,$ If the assumed model is wrong:
 - all allowed choices of (B, S) are wrong
 - wants an update procedure that is robust
- \star Intuition: Should do small changes

$$x^{m} = B(\tilde{x}^{m} - \mu) + \mu + K(y - H\mu) + \varepsilon$$

 $\star\,$ Our optimality criterion: want to minimise

$$\mathsf{E}\Big[\big(x^m - \widetilde{x}^m\big)^T \big(x^m - \widetilde{x}^m\big)\Big|\,\widetilde{x}^{-m}, y\Big]$$

with respect to B and S, under the restriction

$$S = (\mathbb{I} - KH)\Sigma - B\Sigma B^T \ge 0$$

 \star The solution can be found analytically

Optimal solution

★ Recall: Update procedure:

$$\begin{aligned} \theta &= (\mu, \Sigma) \sim f(\theta | \widetilde{x}^{-m}, y) \\ x^m &= B(\widetilde{x}^m - \mu) + \mu + K(y - H\mu) + \varepsilon \end{aligned}$$

where

$$arepsilon \sim \mathsf{N}(\mathsf{0}, S) \hspace{1em} ext{and} \hspace{1em} S = (\mathbb{I} - \mathcal{K}\mathcal{H})\Sigma - B\Sigma B^{\mathcal{T}} \geq 0$$

* Optimal solution of (B, S):

$$S=0$$
 and $B=U\Lambda^{rac{1}{2}}FP^{T}D^{-rac{1}{2}}V^{T}$

where (using singular value decomposition)

$$\Sigma = VDV^{T}$$
, $(\mathbb{I}-KH)\Sigma = U\Lambda U^{T}$ and $\Lambda^{\frac{1}{2}}U^{T}\Sigma VD^{-\frac{1}{2}} = PGF^{T}$

Resulting computational procedure

- \star For $m = 1, \ldots, M$
 - 1. Sample $\theta = (\mu, \Sigma) \sim f(\theta | \widetilde{x}^{-m}, y)$
 - 2. From θ and y compute optimal weight matrix B
 - 3. Compute

$$x^m = B(\tilde{x}^m - \mu) + \mu + K(y - H\mu)$$

- * Use an example introduced in Myrseth and Omre (2010)
- * State vector x_n is a vector of size 100
- \star $x_1 \sim N(0, \Sigma)$, exponential correlation function
- * Forward function is deterministic
 - linear: smoothing for ten nodes
 - (non-linear example)
- $\star\,$ Prior for $\theta=(\mu,\Sigma):$ vague, the same for all time steps
- * Likelihood, $y_n | x_n \sim \mathsf{N}(x_n, 20\mathbb{I})$

- * Use an example introduced in Myrseth and Omre (2010)
- * State vector x_n is a vector of size 100
- \star $x_1 \sim N(0, \Sigma)$, exponential correlation function
- * Forward function is deterministic
 - linear: smoothing for ten nodes
 - (non-linear example)
- $\star\,$ Prior for $\theta=(\mu,\Sigma):$ vague, the same for all time steps
- * Likelihood, $y_n | x_n \sim N(x_n, 20\mathbb{I})$

- * Use an example introduced in Myrseth and Omre (2010)
- * State vector x_n is a vector of size 100
- \star $x_1 \sim N(0, \Sigma)$, exponential correlation function
- * Forward function is deterministic
 - linear: smoothing for ten nodes
 - (non-linear example)
- \star Prior for $heta=(\mu,\Sigma)$: vague, the same for all time steps
- * Likelihood, $y_n | x_n \sim N(x_n, 20\mathbb{I})$

- * Use an example introduced in Myrseth and Omre (2010)
- * State vector x_n is a vector of size 100
- \star $x_1 \sim N(0, \Sigma)$, exponential correlation function
- * Forward function is deterministic
 - linear: smoothing for ten nodes
 - (non-linear example)
- $\star\,$ Prior for $\theta=(\mu,\Sigma):$ vague, the same for all time steps

* Likelihood, $y_n | x_n \sim N(x_n, 20\mathbb{I})$

- * Use an example introduced in Myrseth and Omre (2010)
- * State vector x_n is a vector of size 100
- \star $x_1 \sim N(0, \Sigma)$, exponential correlation function
- * Forward function is deterministic
 - linear: smoothing for ten nodes
 - (non-linear example)
- $\star\,$ Prior for $\theta=(\mu,\Sigma):$ vague, the same for all time steps
- * Likelihood, $y_n | x_n \sim N(x_n, 20\mathbb{I})$

Simulation example revisited

- * Use an example introduced in Myrseth and Omre (2010)
- * State vector x_n is a vector of size 100
- \star $x_1 \sim N(0, \Sigma)$, exponential correlation function
- * Forward function is deterministic
 - linear: smoothing for ten nodes
 - (non-linear example)
- $\star\,$ Prior for $\theta=(\mu,\Sigma):$ vague, the same for all time steps
- * Likelihood, $y_n | x_n \sim N(x_n, 20\mathbb{I})$

Closing remarks

- \star Proposed procedure avoids variance underestimation
 - no need for variance inflation
- $\star\,$ Three changes in proposed update procedure
 - sample $\theta = (\mu, \Sigma)$
 - condition also on the new data y
 - do not condition on \widetilde{x}^m
- * Need more experience for non-linear models
- \star The presented solution use matrices of full rank
 - not computationally feasible for high dimensional problems
 - ongoing work: formulate a sparse matrix variant of the proposed solution
- We have also worked on generalising the idea underlying EnKF to a situation with categorical variables

References to our work

- Loe, M.K. and Tjelmeland, H. (2021). A generalised and fully Bayesian framework for ensemble updating, https://arxiv.org/abs/2103.14565.
- Loe, M.K. and Tjelmeland, H. (2020). Ensemble updating of binary state vectors by maximizing the expected number of unchanged components, *Scandinavian Journal of Statistics*, To appear, https://doi.org/10.1111/sjos.12483
- Loe, M.K., Grana, D. and Tjelmeland, H. (2021). Geophysics-based fluid-facies predictions using ensemble updating of binary state vectors, *Mathematical Geosciences*, 53, 325–347,

https://doi.org/10.1007/s11004-021-09922-4

* Loe, M.K. (2021). Ensemble updating for a state-space model with categorical variables, PhD thesis, NTNU, To appear.