H. Xiao Virginia Tech

Background

Regularized EnKF

Applications

DA for Model Learning

Conclusion

Regularized Ensemble Kalman Method for Inverse Problems

Xin-Lei Zhang, Carlos Michelén-Ströfer, Heng Xiao

Kevin T. Crofton Department of Aerospace and Ocean Engineering Virginia Tech

EnKF Workshop, June 11, 2021

H. Xiao Virginia Tech

- Background
- **Regularized EnKF**
- Applications
- **DA** for Model Learning
- Conclusion

- 1. Background: Ill-Posedness in Turbulence Modeling
- 2. Regularization of EnKF
- 3. Application to Turbulence Field Inversion
- 4. Data Assimilation for Learning Physical Models
- 5. Conclusion

Outline

H. Xiao Virginia Tech

Background

Regularized EnKF

Applications

DA for Model Learning

Conclusion

Acknowledgment of Collaborators

Work presented here are performed in collaboration with my former Ph.D. students:

- Dr. Xin-Lei Zhang (currently at Institute of Mechanics, Chinese Academy of Sciences)
- Dr. Carlos Michelén-Ströfer (currently at Sandia National Lab.)

Dr. X.L. Zhang

Inverse Problem

Reference

H. Xiao Virginia Tech

Background

Regularized EnKF

Applications

DA for Model Learning

Conclusion

 X.-L. Zhang, C. Michelén-Ströfer, H. Xiao. Regularization of ensemble Kalman methods for inverse problems. *Journal of Computational Physics*, 416, 109517, 2020

H. Xiao Virginia Tech

Background

Regularized EnKF

Applications

DA for Model Learning

Conclusion

1. Background: Ill-Posedness in Turbulence Modeling

- 2. Regularization of EnKF
- 3. Application to Turbulence Field Inversion
- 4. Data Assimilation for Learning Physical Models

5. Conclusion

Outline

H. Xiao Virginia Tech

Background

Regularized EnKF

Applications

DA for Model Learning

Conclusion

Turbulence Modeling with RANS

- ► Turbulence is ubiquitous in natural and industrial flows (see examples below).
- RANS (Reynolds Averaged Navier-Stokes) models are still the work-horse tool in industrial computational fluid dynamics (CFD) applications.
- High-fidelity methods such as LES (large eddy simulation) and DNS (direct numerical simulations) are still too expensive for practical flows.
- The drawback of RANS: poor performance in flows with separation, mean pressure gradient, mean flow curvature ... Need to quantify and reduce model uncertainty. We use data assimilation methods to achieve this goal.

H. Xiao Virginia Tech

Background

Regularized EnKF

Applications

DA for Model Learning

Conclusion

Source of Model Uncertainty in RANS Equations

Incompressible Navier–Stokes equations:

$$\nabla \cdot \mathbf{u} = 0$$
$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} - \nu \nabla^2 \mathbf{u} + \frac{1}{\rho} \nabla p = 0$$

- ▶ Reynolds Decomposition: $u_i = U_i + u'_i$ and p = P + p'
- Reynolds-Averaged Navier-Stokes Equations:

$$\begin{aligned} \nabla\cdot\mathbf{U} &= 0\\ \frac{\partial\mathbf{U}}{\partial t} + \mathbf{U}\cdot\nabla\mathbf{U} - \nu\nabla^{2}\mathbf{U} + \frac{1}{\rho}\nabla P = \nabla\cdot\boldsymbol{\tau} \quad \text{where } \tau_{ij} = -\overline{u'_{i}u'_{j}} \end{aligned}$$

Reynolds stress is the source of model uncertainty in RANS equations.

> H. Xiao Virginia Tech

Background

Regularized EnKF

Applications

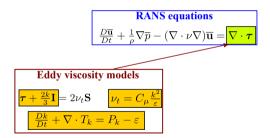
DA for Model Learning

Conclusion

Hierarchy of RANS Turbulence Models¹

Reynolds stress closure is the source of model uncertainty in RANS equations.

- Eddy viscosity models: compute eddy viscosity ν_t and use Boussinesq assumption: dev(τ) = ν_t (∇U + (∇U)^T) to obtain τ
- Reynolds stress transport models: solve a transport PDE for the Reynolds stress tensor τ_{ij} to close RANS



¹Xiao and Cinnella. Quantification of model uncertainty in RANS simulations: A review. Progress in Aerospace Sciences. 108, 1-31, 2019.

H. Xiao Virginia Tech

Background

Regularized EnKF

Applications

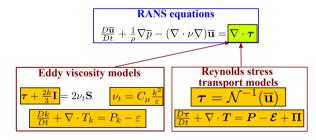
DA for Model Learning

Conclusion

Hierarchy of RANS Turbulence Models¹

Reynolds stress closure is the source of model uncertainty in RANS equations.

- Eddy viscosity models: compute eddy viscosity ν_t and use Boussinesq assumption: dev(τ) = ν_t (∇U + (∇U)^T) to obtain τ
- Reynolds stress transport models: solve a transport PDE for the Reynolds stress tensor τ_{ij} to close RANS



¹Xiao and Cinnella. Quantification of model uncertainty in RANS simulations: A review. Progress in Aerospace Sciences. 108, 1-31, 2019.

> H. Xiao Virginia Tech

Background

Regularized EnKF

Applications

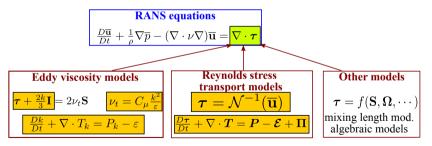
DA for Model Learning

Conclusion

Hierarchy of RANS Turbulence Models¹

Reynolds stress closure is the source of model uncertainty in RANS equations.

- Eddy viscosity models: compute eddy viscosity ν_t and use Boussinesq assumption: dev(τ) = ν_t (∇U + (∇U)^T) to obtain τ
- Reynolds stress transport models: solve a transport PDE for the Reynolds stress tensor τ_{ij} to close RANS



¹Xiao and Cinnella. Quantification of model uncertainty in RANS simulations: A review. Progress in Aerospace Sciences. 108, 1-31, 2019.

H. Xiao Virginia Tech

Background

Regularized EnKF

Applications

DA for Model Learning

Conclusion

Using EnKF to quantity and reduce RANS model uncertainty:

Reducing RANS Model Uncertainty with Data²

- With data (e.g., sparse observation of velocities), one can reduce the uncertainties in the modeled Reynolds stresses.
- This can lead to an improved prediction of velocity fields in unobserved locations.

²Xiao, Wu, Wang, Sun, Roy. Quantifying and reducing model-form uncertainties in Reynolds-averaged Navier–Stokes simulations: A data-driven, physics-informed Bayesian approach. *J. of Computational Physics*, 115-136, 2016.

H. Xiao Virginia Tech

Background

Regularized EnKF

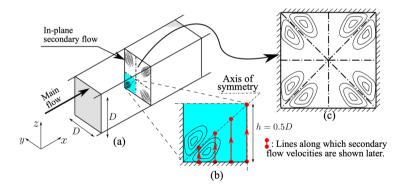
Applications

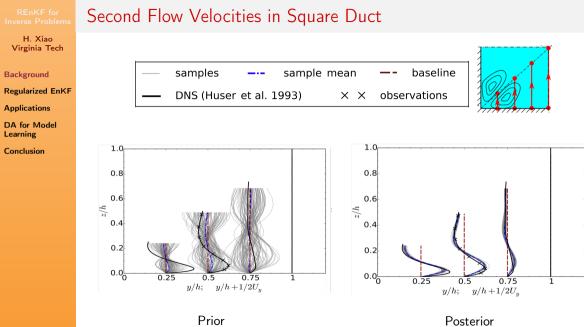
DA for Model Learning

Conclusion

Example: Flow Reconstruction in Square Duct - Setup

- Flow in a square duct
- Features in-plane flows driven by normal Reynolds stress imbalance $\tau_{yy} \tau_{zz}$





H. Xiao Virginia Tech

Background

- Regularized EnKF
- Applications
- DA for Model Learning
- Conclusion

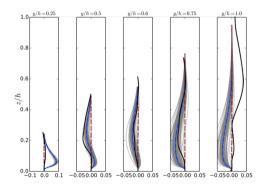
Ill-Posedness in Turbulent Field Inversion: Challenges

Can we infer Reynolds stresses?

- Not yet, at least not with velocity data alone.
- The mapping is highly non-unique: many Reynolds stress τ(x) fields produce the same velocity U field, or at least when observed sparsely.
- Can only give the projection τ(x) informed by the observed in-plane velocity:

 $au_{yy} - au_{zz}$ Vorticity transport PDE:

Inferred
$$au_{yy} - au_{zz}$$



$$\frac{D\omega_x}{Dt} = \nu \nabla^2 \omega_x + \omega_x \frac{\partial U}{\partial x} + \omega_y \frac{\partial U}{\partial y} + \omega_z \frac{\partial U}{\partial z} + \frac{\partial^2 \tau_{yz}}{\partial y^2} - \frac{\partial^2 \tau_{yz}}{\partial z^2} - \frac{\partial^2}{\partial y \partial z} \left(\tau_{yy} - \tau_{zz} \right)$$

H. Xiao Virginia Tech

Background

Regularized EnKF

Applications

DA for Model Learning

Conclusion

Turbulent Field Inversion and Ill-Posedness: Ideas

Need to impose more physical constraints:

- ▶ Positive definiteness (realizability) similar to inferring permeability κ
- Boundary conditions³
- Smoothness
- Representation with better basis (Karhunen–Loève modes): the field is governed by a transport PDE.⁴

Alternatively, we can simplify the problem by inferring eddy viscosity field ν_t and accepting the Boussinesq assumption $\text{dev}(\tau) = \nu_t \left(\nabla \mathbf{U} + (\nabla \mathbf{U})^\top \right)$. But even inferring ν_t can be difficult ...

³Michelén-Ströfer, Zhang, Xiao, Delgosha. Enforcing boundary conditions on physical fields in Bayesian inversion. *Computer Methods in Applied Mechanics and Eng.*, 367:113097, 2020.

⁴Wu, Michelén-Ströfer, Xiao. Physics-informed covariance kernel for model-form uncertainty quantification with application to turbulent flows. *Computers & Fluids*, 193:104292, 2019.

H. Xiao Virginia Tech

Background

Regularized EnKF

Applications

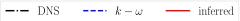
DA for Model Learning

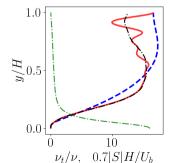
Conclusion

Ill-Posedness in Turbulence Field Inversion

Given velocity measurement, find the eddy viscosity field or Reynolds stress field that give the best agreement with data.

- Such a field inversion problem is essential in shed light in turbulence modeling
- Eddy viscosity ν_t is not a physical quantity in general flows; Reynolds stress field τ is difficult to measure.
- In RANS momentum equation, the velocity responds to Reynolds stress, e.g., τ_{xy} = ν_tS
- The velocity U becomes insensitive to v_t when mean strain rate S ----is small(channel center).
- Need to regularize EnKF!





14/48

> H. Xiao Virginia Tech

Outline

Background

Regularized EnKF

Applications

DA for Model Learning

Conclusion

- 1. Background: Ill-Posedness in Turbulence Modeling
- 2. Regularization of EnKF
- 3. Application to Turbulence Field Inversion
- 4. Data Assimilation for Learning Physical Models
- 5. Conclusion

H. Xiao Virginia Tech

Background

Regularized EnKF

Applications

DA for Model Learning

Conclusion

Background: Regularization in Adjoint Methods

Formulation of inversion

$$\mathbf{x}^{\mathsf{opt}} = \underset{\mathbf{x}}{\operatorname{arg\,min}} J \quad \mathsf{with} \quad J(\mathbf{x}) = \left\| \mathbf{x} - \mathbf{x}^{\mathsf{f}} \right\|_{\mathsf{P}^{-1}}^{2} + \left\| \mathcal{H}[\mathbf{x}] - \mathbf{y} \right\|_{\mathsf{R}^{-1}}^{2}$$

Regularization

- For ill-posed problem: introducing a constraint G[x] = 0 into the cost function (e.g., smoothness, sparsity, prior). See, for example, Dow and Wang (2011)
- Regularization in adjoint based optimization (e.g., variational data assimilation) is straightforward: add a regularization (penalty) term G[x] = 0 into the objective function:

$$J(\mathbf{x}) = \|\mathbf{x} - \mathbf{x}^{\mathsf{f}}\|_{\mathsf{P}^{-1}}^{2} + \|\mathcal{H}[\mathbf{x}] - \mathbf{y}\|_{\mathsf{R}^{-1}}^{2} + \lambda \|\mathcal{G}[\mathbf{x}]\|_{\mathsf{Q}^{-1}}^{2}$$

> H. Xiao Virginia Tech

Background

Regularized EnKF

Applications

DA for Model Learning

Conclusion

Equivalence between Adjoint and Ensemble Methods

$$J(\mathbf{x}) = \left\| \mathbf{x} - \mathbf{x}^{\mathsf{f}} \right\|_{\mathsf{P}-1}^{2} + \left\| \mathcal{H}[\mathbf{x}] - \mathbf{y} \right\|_{\mathsf{R}^{-1}}^{2} + \left\| \mathcal{G}[\mathbf{x}] \right\|_{\mathsf{Q}^{-1}}^{2}$$

- The update scheme of EnKF is derived by maximizing the *a posteriori* probability
- ▶ Therefore, this maximization is implicit in the Kalman update scheme.
- Objective: modify the filtering scheme in EnKF to achieve the same regularization as in adjoint method.

$$J(x) = \|H\mathcal{F}(x) - d\|_{R}^{2} + \|x - x_{0}\|_{P}^{2}$$

$$J(x) = \|H\mathcal{F}(x) - d\|_{R}^{2} + \|x - x_{0}\|_{P}^{2} + \|G(x)\|_{W}^{2}$$

$$\vdots$$

$$\vdots$$

$$x_{post} = x_{prior} + K(d - H\mathcal{F}(x_{prior}))$$

$$x_{post} = x_{prior} + K(d - H\mathcal{F}(x_{prior})) + K_{2}G(x_{prior})$$

H. Xiao Virginia Tech

Background

Regularized EnKF

Applications

DA for Model Learning

Conclusion

Can we derive an analysis that is equivalent to the regularization term in adjoint methods?

$$J(\mathbf{x}_{j}) = \|\mathbf{x}_{j} - \mathbf{x}_{j}^{\mathsf{f}}\|_{\mathsf{P}^{-1}}^{2} + \|\mathcal{H}[\mathbf{x}_{j}] - \mathbf{y}_{j}\|_{\mathsf{R}^{-1}}^{2} + \|\mathcal{G}[\mathbf{x}_{j}]\|_{\mathsf{Q}^{-1}}^{2}.$$
$$\mathsf{P}^{-1}(\mathbf{x}_{j}^{\mathsf{a}} - \mathbf{x}_{j}^{\mathsf{f}}) + (\mathcal{H}'[\mathbf{x}_{j}^{\mathsf{a}}])^{\top}\mathsf{R}^{-1}(\mathcal{H}[\mathbf{x}_{j}^{\mathsf{a}}] - \mathbf{y}_{j}) + \mathcal{G}'[\mathbf{x}_{j}^{\mathsf{a}}]^{\top}\mathsf{Q}^{-1}\mathcal{G}[\mathbf{x}_{j}^{\mathsf{a}}] = 0.$$

Assumptions for simplification

$$\begin{split} \mathcal{H}[\mathbf{x}_{j}^{\mathsf{a}}] &\approx \mathcal{H}[\mathbf{x}_{j}^{\mathsf{f}}] + \mathcal{H}'[\mathbf{x}_{j}^{\mathsf{f}}](\mathbf{x}_{j}^{\mathsf{a}} - \mathbf{x}_{j}^{\mathsf{f}}), \\ \mathbf{H} &\equiv \mathcal{H}'[\mathbf{x}_{j}^{\mathsf{a}}] \approx \mathcal{H}'[\mathbf{x}_{j}^{\mathsf{f}}] \\ \mathcal{G}[\mathbf{x}^{\mathsf{f}}] &\approx \mathcal{G}[\mathbf{x}^{\mathsf{a}}], \qquad \mathcal{G}'[\mathbf{x}^{\mathsf{f}}] \approx \mathcal{G}'[\mathbf{x}^{\mathsf{a}}] \end{split}$$

• Kalman gain matrix: $\mathbf{K} = \mathbf{P}\mathbf{H}^{\top}(\mathbf{R} + \mathbf{H}\mathbf{P}\mathbf{H}^{\top})^{-1}$

Regularized Ensemble Kalman Filter⁵ (1/2)

⁵Zhang, Michelén-Ströfer, Xiao. Regularized ensemble Kalman methods for inverse problems. *J. Computational Physics*, 416, 109517, 2020.

H. Xiao Virginia Tech

Background

Regularized EnKF

Applications

DA for Model Learning

Conclusion

Regularized Ensemble Kalman Filter (2/2)

Derived analysis scheme:

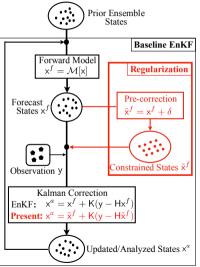
$$\begin{split} \mathbf{x}_{j}^{\mathsf{a}} = \mathbf{x}_{j}^{\mathsf{f}} \underbrace{- \mathsf{P}(I + \mathsf{H}^{\top}\mathsf{R}^{-1}\mathsf{H}\mathsf{P})^{-1} \; \mathcal{G'}^{\top}\mathsf{Q}^{-1}\mathcal{G}}_{\text{regularization term}} \\ + \mathsf{P}\mathsf{H}^{\top}(\mathsf{R} + \mathsf{H}\mathsf{P}\mathsf{H}^{\top})^{-1}(\mathsf{y}_{j} - \mathsf{H}\mathsf{x}_{j}^{\mathsf{f}}) \end{split}$$

Kalman correction

▶ Re-written to a pre-correction form:

$$\begin{split} \widehat{\mathbf{x}_{j}^{\mathsf{f}} = \mathbf{x}_{j}^{\mathsf{f}} + \boldsymbol{\delta}}, \text{ with } \boldsymbol{\delta} &= -\mathsf{P}\mathcal{G}'^{\top}\mathsf{Q}^{-1}\mathcal{G}\\ \mathbf{x}_{j}^{\mathsf{a}} &= \widetilde{\mathbf{x}}_{j}^{\mathsf{f}} + \mathsf{K}(\mathsf{y}_{j} - \mathsf{H}\widetilde{\mathsf{x}}_{j}^{\mathsf{f}}) \end{split}$$

 This is similar to the baseline EnKF except for the correction (boxed)



H. Xiao Virginia Tech

Regularized EnKF

Background

Applications

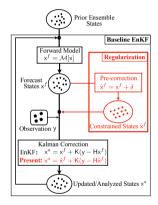
DA for Model

Learning

Conclusion

Regularized Ensemble Kalman Filter: Implementation

- Built general constraints into EnKF
 - Derived regularization for ensemble methods equivalent to that in adjoint methods
 - Bridges the gap between regularization in adjoint- and ensemble-based methods
 - Requires only minor algorithmic modifications



Open-source implementation in Python⁶. Code: github.com/xiaoh/DAFI

⁶Michelén-Ströfer, Zhang, Xiao. DAFI: An open-source framework for ensemble-based data assimilation and field inversion. *Comm. Computational Physics*, 29, 1583-1622, 2021.

H. Xiao Virginia Tech

Background

Regularized EnKF

Applications

DA for Model Learning

Conclusion

Test 1: Demonstration on Toy Problem - Setup

- State: $\boldsymbol{\omega} = [\omega_1, \omega_2]^{\top}$
- Model (adopted from Wu et al. 2019):

$$\mathbf{z} = \begin{bmatrix} \exp(-(\omega_1 + 1)^2 - (\omega_2 + 1)^2) \\ \exp(-(\omega_1 - 1)^2 - (\omega_2 - 1)^2) \end{bmatrix}$$

 $(\omega_1 + 1)^2 + (\omega_2 + 1)^2 = \log 1.5$

- Observation mapping:
 v = Hz, H = [-1.5, -1.0]
- ▶ Truth $\boldsymbol{\omega} = (1.0, 1.0)$
- Local minima (circle):

+ truth local minimums • prior mean

$$3^{2}$$
 1^{3}
 3^{2}
 1^{3}
 3^{2}
 1^{3}
 3^{2}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}
 1^{3}

EnKF inference results depends on the prior initial states.

H. Xiao Virginia Tech

Background

Regularized EnKF

Applications

DA for Model Learning

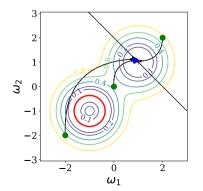
Conclusion

Test 1: Demonstration on Toy Problem - Results

Test 1: Equality constraint

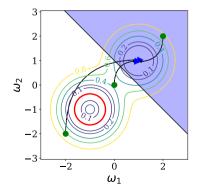
$$h_{eq}[\boldsymbol{\omega}] = \omega_1 + \omega_2 - 2 = 0$$

 $\mathcal{G}(\boldsymbol{\omega}) = h_{eq}[\boldsymbol{\omega}]$



Test 2: Inequality constraint

$$h_{\mathsf{in1}}[\boldsymbol{\omega}] = -\omega_1 - \omega_2 + 1 < 0$$
$$\mathcal{G}(\boldsymbol{\omega}) = \max\left(0, (h_{\mathsf{in}}[\boldsymbol{\omega}])^2\right)$$



H. Xiao Virginia Tech

Background

Regularized EnKF

Applications

DA for Model Learning

Conclusion

Test 2: Inferring Diffusivity From Temperature - Setup

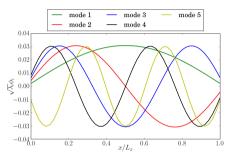
 Objective: infer diffusivity field µ[x] from observations of temperature u

$$-\frac{d}{dx}\left(\mu[x]\frac{du}{dx}\right) = f[x]$$
$$f[x] = 100\sin(2\pi x/L_x)$$
$$u|_{x=0} = u|_{x=L_x} = 0$$

 Synthetic truth: only first 3 modes are nonzero

• Observation data at $x/L = 0.1, 0.2, \dots, 0.9$

Penalty function: $\mathcal{G}[\boldsymbol{\omega}] = \boldsymbol{\omega}$ Weight matrix: $Q^{-1} = \text{diag}\left(\frac{1}{n}, \frac{2}{n}, \frac{3}{n}, \dots, \frac{n-1}{n}, 1\right)$



Karhunen–Loève Modes

Test 2: Inferring Diffusivity From Temperature - Results

0.4

0.4

0.6

 x/L_x

0.6

 $\frac{1}{x}/L_{r}$

0.8

0.8

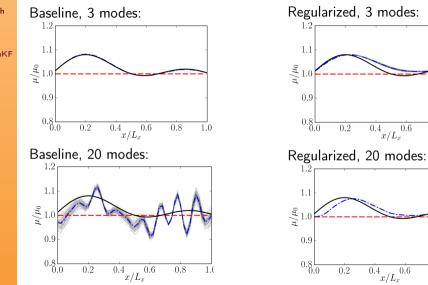
1.0

1.0

Applications

DA for Model Learning

Conclusion



H. Xiao Virginia Tech

Background

Regularized EnKF

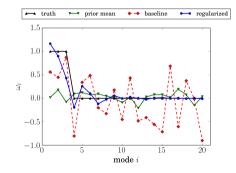
Applications

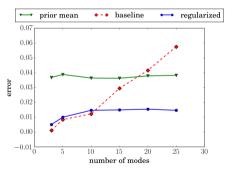
DA for Model Learning

Conclusion

Test 2: Inferring Diffusivity From Temperature - Error

$$-\frac{d}{dx}\left(\mu[x]\frac{du}{dx}\right) = f[x]$$





Inferred Coefficients

Error vs. no. of Modes

H. Xiao Virginia Tech

Background Regularized EnKF

Applications

DA for Model Learning

Conclusion

- 1. Background: Ill-Posedness in Turbulence Modeling
- 2. Regularization of EnKF
- 3. Application to Turbulence Field Inversion
- 4. Data Assimilation for Learning Physical Models
- 5. Conclusion

Outline

H. Xiao Virginia Tech

Background

Regularized EnKF

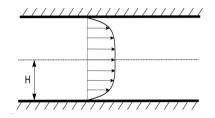
Applications

DA for Model Learning

Conclusion

Inversion of Eddy Viscosity in Channel Flows: Setup⁷

- \blacktriangleright Observation: streamwise velocity U
- Inferred quantity: eddy viscosity $\nu_t(x)$



⁷Zhang, Xiao, He. Regularized ensemble Kalman inversion of turbulence quantity fields. *Submitted.*

H. Xiao Virginia Tech

Background Regularized EnKF

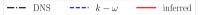
Applications

DA for Model Learning

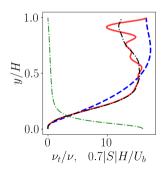
Conclusion

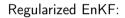
Inversion of Eddy Viscosity in Channel Flows: Results

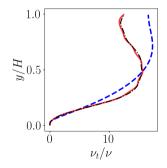
- > Smoothness regularization is essential in recovering ν_t in the channel center
- Baseline EnKF cannot obtain accurate inversion due to the ill-conditioning in channel center



Baseline EnKF:







H. Xiao Virginia Tech

Background

Regularized EnKF

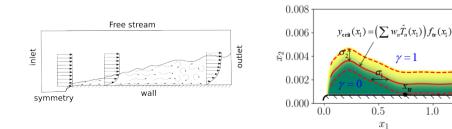
Applications

DA for Model Learning

Conclusion

Inferring Laminar-Turbulent Intermittency: Setup

- The intermittency is an indicator of the larminar region and the turbulent region. ($\gamma = 0$: laminar region; $\gamma = 1$: turbulent region)
- \blacktriangleright Parameterization of the intermittency field with sigmod function (transition from ($\gamma=0$ to $\gamma=1$
- Regularization on the prior value of the transition point
- Regularization on the sparsity of the Chebyshev mode



r0.99

-0.75

-0.5

-0.25

Ln

H. Xiao Virginia Tech

Background Regularized EnKF

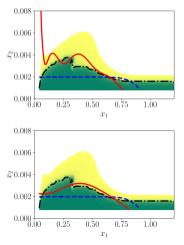
Applications

DA for Model Learning

Conclusion

Inferring Laminar-Turbulent Intermittency: Results γ

- Regularization leads to smooth intermittency field
- ▶ The inferred field is close to the results of Langtry-Menter transition model



Baseline, Level $\gamma=0.5$

--- initial --- Langtry-Menter ---- inferred

Regularize, Level $\gamma=0.5$

Inferring Laminar-Turbulent Intermittency: Results $\nu_{\rm t}$

H. Xiao Virginia Tech

Background

Regularized EnKF

Applications

DA for Model Learning

Conclusion

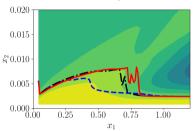
Regularization leads to better agreements with synthetic truth (Langtry-Menter).

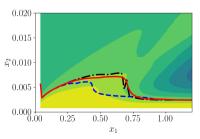
Background is the contour for γ

Baseline, Level $u_t/
u = 6.7$

--- initial --- Langtry-Menter ---- inferred

Regularize, Level $\nu_t/\nu = 6.7$





Inverse Problen

H. Xiao Virginia Tech

Background

Regularized EnKF

Applications

DA for Model Learning

Conclusion

- We used observation data to quantify and reduce model uncertainty in RANS simulations.
- \blacktriangleright Inferring latent field ($\nu_{t},\,\tau)$ is ill-conditioned and need regularization
- To this end, we proposed a regularized EnKF method to enforce constraints, with preliminary success in application of turbulence field inversion

Additional:

Conclusion

> Preliminary efforts in combining data assimilation and machine learning.

H. Xiao Virginia Tech

Background Regularized EnKF

Applications

DA for Model Learning

Conclusion

Outline

1. Background: Ill-Posedness in Turbulence Modeling

- 2. Regularization of EnKF
- 3. Application to Turbulence Field Inversion
- 4. Data Assimilation for Learning Physical Models

5. Conclusion

H. Xiao Virginia Tech

Background

Regularized EnKF

Applications

DA for Model Learning

Conclusion

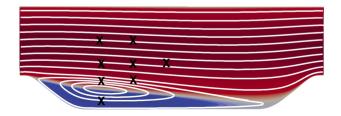
From Field Inversion to Model Learning (1/2)

Scenario: Inferring Reynolds stress from velocity Consider the Reynolds averaged Navier-Stokes equation

$$\mathbf{U} \cdot \nabla \mathbf{U} - \nu \nabla^2 \mathbf{U} + rac{1}{
ho}
abla P =
abla \cdot oldsymbol{ au}$$
 or concisely, $\mathcal{N}[\mathbf{u}] =
abla \cdot oldsymbol{ au}$

Assume:

- \blacktriangleright Reynolds stress field $au(\mathbf{x})$ is the only known quantity (field)
- ► Sparse observations velocities are available in the domain (×)



H. Xiao Virginia Tech

Background Regularized EnKF

Applications

DA for Model Learning

Conclusion

From Field Inversion to Model Learning (2/2)

Data Assimilation

 $\mathcal{N}[\mathbf{U}] =
abla \cdot \boldsymbol{ au}(\mathbf{x})$

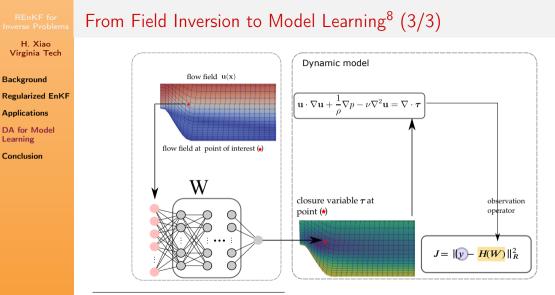
 Specific to this configuration. The field inferred from this observation cannot be generalized to different systems (configurations).

Machine Learning

(from sparse observations)

 $\mathcal{N}[\mathbf{U}] = \nabla \cdot \boldsymbol{\tau}(\mathbf{U}; \boldsymbol{W})$

 Should be universal, at least generalizable to similar configurations.



⁸Michelén-Ströfer, Zhang, Xiao. Ensemble gradient for learning turbulence models from indirect observations, 2021. Submitted. Available at: arxiv: 2104.07811

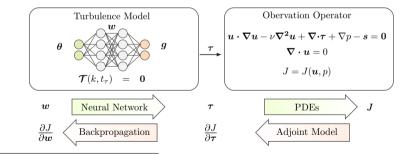
H. Xiao Virginia Tech

- Background
- Regularized EnKF
- Applications
- DA for Model Learning
- Conclusion

Combining Neural Networks and Adjoint for Model Learning⁹

- Learn neural-network-based turbulence model from observed velocities
- ▶ Adjoint based optimization. Gradient w.r.t. ω via chain rule:

$$\frac{\partial J}{\partial \boldsymbol{w}} = \frac{\partial J}{\partial \boldsymbol{\tau}} \frac{\partial \boldsymbol{\tau}}{\partial \boldsymbol{w}}$$



⁹Michelén-Ströfer, Xiao. End-to-end differentiable learning of turbulence models from indirect observations. *Theoretical and Applied Mechanics Letters*. arxiv: 2104.04821

H. Xiao Virginia Tech

Background

Regularized EnKF

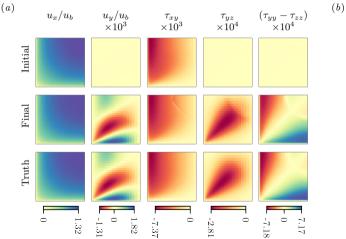
Applications

DA for Model Learning

Conclusion

Differential Framework for Model Learning

Learn Reynolds stress from velocity observations: square duct



H. Xiao Virginia Tech

Background

Regularized EnKF

Applications

DA for Model Learning

Conclusion

Using Ensemble to Compute Gradient

- Fully differential framework is desirable, but adjoint can be expensive to develop
- Propose using ensemble simulations to compute gradient

$$\nabla_{\tau}J = \left((\Delta \tau^{\top} \Delta \tau + \lambda \mathsf{I})^{-1} \Delta \tau^{\top} \right)^{\top} \left(\Delta U^{\top} \mathsf{R}^{-1} \left(\mathcal{H}(\tau) - \mathsf{y} \right) \right)$$

- State representation: $\tau = \overline{\tau} + \beta \Delta \tau$
- Chain rule to compute gradient: $\nabla_{\tau}J = \nabla_{\beta}J \cdot \nabla_{\tau}\beta$

$$\nabla_{\beta}J = \Delta U^{\top} \mathsf{R}^{-1} \left(\mathcal{H}(\tau) - \mathsf{y} \right)$$

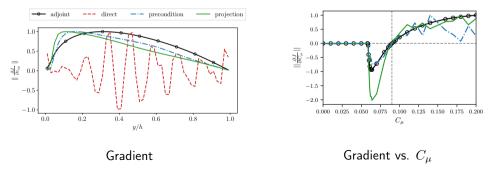
$$\nabla_{\tau}\beta = (\Delta\tau^{\top}\Delta\tau + \lambda \mathsf{I})^{-1}\Delta\tau$$

H. Xiao Virginia Tech

- Background
- Regularized EnKF
- Applications
- DA for Model Learning
- Conclusion

Ensemble Gradient vs. Adjoint Gradient

- Ensemble method provides a smooth estimation of the sensitivity and give the same gradient direction as the adjoint method.
- Sensitivity to C_µ with ensemble method has different magnitude, but the ensemble gradients result in the same sign and same zero as from the adjoint in the search region near the true value.



> H. Xiao Virginia Tech

Background Regularized EnKF

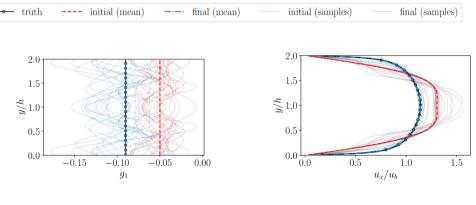
Applications

DA for Model Learning

Conclusion

Ensemble Gradient for Learning Eddy Viscosity Model

- Use the observation of velocity to learn the eddy viscosity
- > The trained model not only results in the correct velocity but learns the true underlying model for $g_1(=-C_\mu)$



Learned coefficient $(-C_{\mu})$ Learned velocity U

H. Xiao Virginia Tech

Background Regularized EnKF

Applications

DA for Model Learning

Conclusion

Outline

- 1. Background: Ill-Posedness in Turbulence Modeling
- 2. Regularization of EnKF
- 3. Application to Turbulence Field Inversion
- 4. Data Assimilation for Learning Physical Models

5. Conclusion

> H. Xiao Virginia Tech

- Background
- **Regularized EnKF**

Applications

DA for Model Learning

Conclusion

Conclusion (again)

- We used observation data to quantify and reduce model uncertainty in RANS simulations.
- \blacktriangleright Inferring latent field ($\nu_{t},\,\tau)$ is ill-conditioned and need regularization
- To this end, we proposed a regularized EnKF method to enforce constraints, with preliminary success in application of turbulence field inversion
- Preliminary efforts in combining data assimilation and machine learning.

H. Xiao Virginia Tech

Background

Regularized EnKF

Applications

DA for Model Learning

Conclusion

References

- 1. EnKF-based mean velocity construction:
 - Xiao, Wu, Wang, Sun, Roy. Quantifying and reducing model-form uncertainties in Reynolds-averaged Navier–Stokes simulations: A data-driven, physics-informed Bayesian approach. J. of Computational Physics, 115-136, 2016.
- 2. Regularization of EnKF:
 - Zhang, Michelén-Ströfer, Xiao. Regularized ensemble Kalman methods for inverse problems. J. of Computational Physics, 416, 109517, 2020.
- 3. Python implementation:
 - Michelén-Ströfer, Zhang, Xiao. DAFI: An open-source framework for ensemble-based data assimilation and field inversion. *Comm. Computational Physics*, 29, 1583-1622, 2021.
- 4. Enforcing boundary conditions and PDE-informed covariance:
 - Michelén-Ströfer, Zhang, Xiao, Delgosha. Enforcing boundary conditions on physical fields in Bayesian inversion. *Computer Methods in Applied Mechanics and Eng.*, 367:113097, 2020.
 - Wu, Michelén-Ströfer, Xiao. Physics-informed covariance kernel for model-form uncertainty quantification with application to turbulent flows. *Computers & Fluids*, 193:104292, 2019.
- 5. Application to turbulence modeling:
 - Zhang, Xiao, He. Regularized ensemble Kalman inversion of turbulence quantity fields. Submitted.

RENKE for Inverse Problen

> H. Xiao Virginia Tech

Background

Regularized EnKF

Applications

DA for Model Learning

Conclusion

Thank you

Thank you for you attention. Questions and comments are appreciated!

H. Xiao Virginia Tech

Projection Method: EnKF with Constraints

- After Kalman filtering, the projection method projects the updated state onto a constrained surface by solving a constrained optimization problem:
 x^a = arg min J(x^a x^f)^T P⁻¹(x^a x^f) s. t. Gx^a = z
- ► Problem solved with the Lagrange multiplier method: $L = (x^{a} - \hat{x}^{f})^{\top} \hat{P}^{-1} (x^{a} - \hat{x}^{f}) + 2\lambda^{\top} (G\hat{x}^{a} - z)$
- This method imposes a hard constraint

H. Xiao Virginia Tech

Projection Method: EnKF with Constraints

Taking the first order derivatives w.r.t state and the Lagrange multiplier λ to be zero yields:

$$\frac{\partial L}{\partial \mathbf{x}^{\mathbf{a}}} = \hat{\mathsf{P}}^{-1}(\mathbf{x}^{\mathbf{a}} - \hat{\mathbf{x}}^{\mathbf{f}}) + \mathsf{G}^{\top} \lambda = 0,$$
$$\frac{\partial L}{\partial \lambda} = \mathsf{G} \hat{\mathbf{x}}^{\mathbf{a}} - \mathsf{z} = 0$$

► This leads to

$$\begin{split} \boldsymbol{\lambda} &= (G\hat{P}G^{\top})^{-1}(G\hat{x}^f - z) \\ \boldsymbol{x}^a &= \hat{x}^f - \hat{P}G^{\top}(G\hat{P}G^{\top})^{-1}(G\hat{x}^f - z) \end{split}$$

H. Xiao Virginia Tech

Pseudo Observation Method: EnKF with Constraints

Augment the observation with the constraints:

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{z} \end{bmatrix} = \begin{bmatrix} \mathbf{H} \\ \mathbf{G} \end{bmatrix} \mathbf{x} + \begin{bmatrix} \epsilon \\ 0 \end{bmatrix}$$
$$\tilde{\mathbf{R}} = \begin{bmatrix} \mathbf{R} & 0 \\ 0 & 0 \end{bmatrix}$$

- Extended to enforce soft constraints by adding noise in the constraint function and modified the error covariance matrix
- The observation augmentation method is equvalent to projection method (Simon, 2010)
- No change in Kalman updating, but observation matrix can be large expensive for matrix inversion.
- Cannot handle inequality constraints.