
Assimilation of Multiple Linearly Dependent

Data Vectors

Trond Mannseth

NORCE Energy



Linearly dependent data vectors

Main issue

Assume that we want to assimilate the data vectors {dl}Ll=1, where
{dl = BldL}L−1

l=1 and {Bl}L−1
l=1 denotes a sequence of matrices

What is the appropriate way to assimilate such a data sequence, taking
into account that some, but not necessarily all, information is used
multiple times?
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Linearly dependent data vectors—example

Multilevel data

Data
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{dl = BldL}L−1
l=1

With multilevel data, Bl denotes an averaging operator from level L to
level l

Time-domain multilevel data is also a possibility
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Why bother?
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Gradually introducing more and more information, like with sequential
assimilation of d1, d2, . . . , dL, can be advantageous for nonlinear
problems

Multilevel data are required in order to correspond to results from
multilevel simulations
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Multiple data assimilation1 (MDA)
Brief description

With MDA, the same data are assimilated multiple times. Since the data
are reused, the data-error covariances must be inflated. The motivation
for MDA is to improve performance on nonlinear problems by gradually
introducing the available information in the data, leading to a sequence
of smaller updates instead of a single large update

1Emerick and Reynolds, Computers & Geosci 55, 2013
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Multiple use of
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Partially multiple use of the
same information

Abbreviation: PMDA
(Partially MDA)
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MDA condition
Brief recap

While the motivation for MDA is to improve performance on nonlinear
problems, it is desirable that it samples correctly from the posterior PDF
for the parameter vector in the linear-Gaussian case

. This case can be
analyzed using assembled quantities, where each row corresponds to an
assimilation cycle. The analysis leads to an inflated assembled covariance
and the MDA condition for the inflation coefficients

δ =

 dL
...
dL



Γ =
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...
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Ξ =

 CL . . . 0
...

. . .
...

0 . . . CL



∑L
l=1 α

−1
l = 1
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MDA condition
Brief recap

While the motivation for MDA is to improve performance on nonlinear
problems, it is desirable that it samples correctly from the posterior PDF
for the parameter vector, m, in the linear-Gaussian case. This case can
be analyzed using assembled quantities, where each row corresponds to
an assimilation cycle. The analysis2 leads to an inflated assembled
covariance and the MDA condition for the inflation coefficients
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2Emerick and Reynolds, Computers & Geosci 55, 2013
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MDA condition
Slight change of notation

To prepare for the description of the PMDA condition, which follows
next, I use the subscript MDA for ‘MDA quantities’

, I introduce the

coefficients {λl = α
1/2
l }

L
l=1, I multiply the MDA condition by C−1

L , and I
reformulate the assembled data covariance and the MDA condition
slightly
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PMDA condition in practice
Specification of ΞPMDA

ΞPMDA =

 A1C1AT
1 . . . 0

...
. . .

...
0 . . . ALCLA

T
L

 ∑L
l=1 B

T
l

(
AlClA

T
l

)−1
Bl = C−1

L

The specification of {αl}Ll=1 in ΞMDA raises no other issue than how to
make MDA perform optimally on a given nonlinear problem. Resolving
this issue is not straightforward, but the specification of {Al}Ll=1 in
ΞPMDA raises some issues in addition

Before discussing these additional issues, note that since {dl = BldL}L−1
l=1 ,

it follows that {Cl = BlCLB
T
l }

L−1
l=1 , leading to the following reformulated

PMDA condition

∑L−1
l=1 BT

l

(
AlBlCLB

T
l AT

l

)−1
Bl +

(
ALCLA

T
L

)−1
= C−1

L



PMDA condition in practice
Specification of ΞPMDA

ΞPMDA =

 A1C1AT
1 . . . 0

...
. . .

...
0 . . . ALCLA

T
L

 ∑L
l=1 B

T
l

(
AlClA

T
l

)−1
Bl = C−1

L

The specification of {αl}Ll=1 in ΞMDA raises no other issue than how to
make MDA perform optimally on a given nonlinear problem. Resolving
this issue is not straightforward, but the specification of {Al}Ll=1 in
ΞPMDA raises some issues in addition

Before discussing these additional issues, note that since {dl = BldL}L−1
l=1 ,

it follows that {Cl = BlCLB
T
l }

L−1
l=1 , leading to the following reformulated

PMDA condition

∑L−1
l=1 BT

l

(
AlBlCLB

T
l AT

l

)−1
Bl +

(
ALCLA

T
L

)−1
= C−1

L



PMDA condition in practice
Specification of ΞPMDA—some issues
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Solving the PMDA condition for one of the Al ’s seems difficult

Solving it for ALCLA
T
L is, however, viable
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PMDA condition in practice
Specification of ΞPMDA—a possibility

ALCLA
T
L =

(
IL − CL

∑L−1
l=1 BT
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(
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T
l AT
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Selecting {Al = α
1/2
l Il}L−1

l=1 leads to

ALCLA
T
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(
IL − CL

∑L−1
l=1 α−1

l BT
l

(
BlCLB

T
l

)−1
Bl

)−1

CL
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= (IL − QL)−1

One may then write

ΞPMDA =

(
Ξ

[1,L−1]
MDA 0

0 (IL − QL)−1 CL

)
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PMDA condition in practice
Specification of ΞPMDA—a possibility with some issues

ΞPMDA =

(
Ξ

[1,L−1]
MDA 0

0 (IL − QL)−1 CL

)

For a given matrix sequence {Bl}Ll=1, one can risk selecting {αl}L−1
l=1 such that

(IL − QL)−1 CL does not become a covariance matrix

The matrix IL − QL can be computationally costly to invert for large problems

Specifying sufficiently large elements in {αl}L−1
l=1 will make ‖QL‖ small enough

that (IL − QL)−1 CL becomes a covariance matrix, and it will allow for

approximation of (IL − QL)−1 by a truncated Neumann series. Specifying too

large elements in {αl}L−1
l=1 will, however, effectively remove the influence of

{dl}L−1
l=1 on the assimilation, which is unwanted. A balanced specification of

{αl}L−1
l=1 is therefore required
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Summary

Assimilation of multiple linearly dependent data vectors incorporates use of
some information multiple times (partially multiple data asssimilation (PMDA)).
The corresponding data covariance matrices should therefore be modified.

A condition that the modified covariance matrices must satisfy in order to
sample correctly in the linear-Gaussian case has been developed (Mannseth, in
review). This PMDA condition is a generalization of the MDA condition
(Emerick and Reynolds, Computers & Geosci 55, 2013) that the covariances
must satisfy in the special case when a single data vector is assimilated multiple
times

A simplified version of the PMDA condition has been proposed (Mannseth, in

review). Also application of the simplified version involves both computational

and accuracy issues
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