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ES-MDA

Reservoir history matching is a parameter-estimation problem.

Simulation restarts required by EnKF (sequential data assimilation)
are time-consuming:

I Convergence problems in the reservoir simulations.
I Very slow in clusters.

ES is faster and simpler. But it does not match data sufficiently well.

ES-MDA conciliates advantages of ES with better data matches:
truly black-box and highly parallelizable.
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ES-MDA is in Operational Use
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Data-Space Inversion?

Inspired in the work from Sun and Durlofsky (2017)[1].
Apply ES-MDA to updated directly the production profiles from a
prior ensemble.

Model-space inversion

ES-MDA

ES-MDA

 TTT ,,priorm  
 TTT ,, wo

priorprior

qq

mgd



  TTT ,,postm

 TTT ,,priorm  TTT ,, wopost qqd 

Update m

Update d

 
 TTT ,, wo

postpost

qq

mgd





 
 TTT ,, wo

priorprior

qq

mgd





Data-space inversion

ES-MDA

ES-MDA

 TTT ,,priorm  
 TTT ,, wo

priorprior

qq

mgd



  TTT ,,postm

 TTT ,,priorm  TTT ,, wopost qqd 

Update m

Update d

 
 TTT ,, wo

postpost

qq

mgd





 
 TTT ,, wo

priorprior

qq

mgd





?Work with Mateus M. Lima (Petrobras) and Carlos E.P. Ortiz (UENF).
[1]Sun, W., Durlofsky, L., A New Data-space Inversion Procedure for Efficient Uncertainty Quantification in Subsurface Flow
Problems, Math Geosci (2017).
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DSI – Field Case[2]

Offshore turbidite Reservoir in Campos
Basis.

18 years of production through 43 wells.

Ensemble size: 500.

Localization:
I Space = 2 km.
I Time = 6000 days.

[2]Lima, M.M.; Emerick, A.A. and Ortiz, C.E.P, Data-Space Inversion with Ensemble Smoother, arXiv:1903.09576 [math.NA]
(2019).
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Field Case – Water Production Rate

red dots: observed data

gray: prior (p10, p90)

black: ES-MDA – model-space inversion (p10, p50, p90)

blue: DSI-ESMDA – data-space inversion (p10, p50, p90)
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Facies Parameterization using Deep Learning?

Updating channelized facies models is still a major challenge with
ensemble data assimilation.

Deep Learning (DL) emerged in the last decade as powerful technics
for learning complex data representations[3].

?Work with Smith C. Arauco and Marco Aurélio Pacheco (PUC-Rio).
[3]Goodfellow, I., Bengio, Y. and Courville, A., Deep Learning, MIT Press (2016).
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Generative Models

Machine learning methods designed to generate samples from
complex (and often with unknown closed form) probability
distributions in high-dimensional spaces.

I We would like to generate samples x ∼ p(x).
I We construct a deterministic function f(z;w) parameterized by w,

which receives a random argument z ∼ p(z).
I f(z;w) is modeled as a neural network, trained with a set of data

points xi such that if we provide z ∼ p(z), it generates x̂ ∼ p(x|z;w)
which resembles samples from p(x).

 wz;f

 zz p~ x̂
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Autoencoders

Combination of two neural networks:
I Encoder: z = fe(x;we)
I Decoder: x̂ = fd(z;wd)

Training: find we and wd that minimizes the reconstruction error,
e.g., ‖x− x̂‖2 = ‖x− fd(fe(x;we);wd)‖2.

Autoencoders can be seen as nonlinear generalizations of PCA.

x̂x
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Variational Autoencoder (VAE)[4]

For given training data, x, we want to design a neural network by
maximizing p(x) with respect to a set of learnable parameters w.

p(x) =

∫

z
p(x|z)︸ ︷︷ ︸

generative model

prior︷︸︸︷
p(z) dz = Ez∼p(z) [p(x|z)] .

One alternative for training is to use Monte Carlo:
I Sample a set of zi ∼ p(z) and compute p(x) ≈ 1

N

∑
i p(x|zi).

I Apply gradient ascent to maximize p(x) with respect to w.

It won’t work if x is high-dimensional (we need too many samples zi).

Variational inference: introduce another (easy to sample) distribution
q(z|x) and determine the parameters of q such that it generates
samples zi corresponding to high probability regions of p(x|z).

[4]Kingma, D.P. and Welling, M., Auto-Encoding Variational Bayes, arXiv:1312.6114 [stat.ML] (2013).
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Variational Autoencoder (VAE)

Instead of maximizing

p(x) = Ez∼p(z) [p(x|z)]

we maximize
p̂(x) = Ez∼q(z|x) [p(x|z)]

The trick is to use a well-known result from variational inference:

log-evidence︷ ︸︸ ︷
ln p(x) −DKL [q(z|x)||p(z|x)]︸ ︷︷ ︸

error in the approximation

= Ez∼q [ln p(x|z)]−DKL [q(z|x)||p(z)]︸ ︷︷ ︸
lower bound for the log-evidence

where DKL[q||p] is Kullback–Leibler divergence of q with respect to p.

Instead of maximizing ln p(x) we can maximize its lower bound.
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Variational Autoencoder (VAE)

Mean field approach: select
q(z|x) = N ([µ1, . . . , µNz ]

>, diag[σ21, . . . , σ
2
Nz

]>) and p(z) = N (0, I).

During training, we minimize the loss function

L(x) = LRE(x)︸ ︷︷ ︸
reconstruction error

+ DKL [q(z|x)‖p(z)]︸ ︷︷ ︸
regularization term

where

LRE(x) = −
1

Nx

Nx∑

i=1

[xi ln(x̂i) + (1− xi) ln(1− x̂i)]

DKL [q(z|x)‖p(z)] =
1

2

Nz∑

i=1

(
µ2i + σ2i − ln

(
σ2i
)
− 1
)
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Variational Autoencoder (VAE)

x x̂z xz |q  zx |p

Encoder
(inference network)

Decoder
(generative network)

Code 
(hidden representation of data)

q(z|x) encodes x in z.

p(x|z) decodes z in x.

Minimization of LRE(x) makes x̂ to resemble x.

Minimization of DKL [q(z|x)‖p(z)] pushes q(z|x) to be similar to
N (0, I).
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Example MNIST (handwritten digits) dataset[5,6].

VAE generates a more continuous latent representation (easier to
interpolate).

Autoencoder Variational autoencoder

[5]LeCun, Y., Cortes, C., and Burges, C.J.C., The MNIST Database of Handwritten Digits,
http://yann.lecun.com/exdb/mnist/
[6]Shafkat, I., Intuitively Understanding Variational Autoencoders,
https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf
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Visualization of MNIST data with a two-dimensional latent space.

VAE learned the data manifold[4].

(a) Learned Frey Face manifold (b) Learned MNIST manifold

Figure 4: Visualisations of learned data manifold for generative models with two-dimensional latent
space, learned with AEVB. Since the prior of the latent space is Gaussian, linearly spaced coor-
dinates on the unit square were transformed through the inverse CDF of the Gaussian to produce
values of the latent variables z. For each of these values z, we plotted the corresponding generative
pθ(x|z) with the learned parameters θ.

(a) 2-D latent space (b) 5-D latent space (c) 10-D latent space (d) 20-D latent space

Figure 5: Random samples from learned generative models of MNIST for different dimensionalities
of latent space.

B Solution of −DKL(qφ(z)||pθ(z)), Gaussian case

The variational lower bound (the objective to be maximized) contains a KL term that can often be
integrated analytically. Here we give the solution when both the prior pθ(z) = N (0, I) and the
posterior approximation qφ(z|x(i)) are Gaussian. Let J be the dimensionality of z. Let µ and σ
denote the variational mean and s.d. evaluated at datapoint i, and let µj and σj simply denote the
j-th element of these vectors. Then:

∫
qθ(z) log p(z) dz =

∫
N (z;µ,σ2) logN (z;0, I) dz

= −J
2
log(2π)− 1

2

J∑

j=1

(µ2
j + σ2

j )

10

[4]Kingma, D.P. and Welling, M., Auto-Encoding Variational Bayes, arXiv:1312.6114 [stat.ML] (2013).
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Convolutional Network[7]

Standard fully-connected neural nets do not scale well for
high-dimensional data x.

Convolution layers are specialized in data with grid structure such as
images and time series.

They provide a more efficient feature extraction by reducing the
number of training parameters (weights in the filters).

Convolution Sub-sampling Convolution Sub-sampling Fully-connected

[7]LeCun, Y. Generalization and Network Design Strategies. Tech report, University of Toronto (1989).
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ES-MDA-CVAE[8]
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After the CVAE is trained, we use ES-MDA to update the latent
variables and the decoder to reconstruct facies.

[8]Canchumuni, S.W.A., Emerick, A.A. and Pacheco, M.A.C., Towards a Robust Parameterization for Conditioning Facies
Models Using Deep Variational Autoencoders and Ensemble Smoother, Comput & Geosci (2019).
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Test Case 1

Two-facies model generated with
snesim[9].

45× 45 gridblocks.

Constant permeability for each facies:
I Channel: 5000 mD.
I Background: 500 mD.

Reference

[9]Strebelle, S., Conditional Simulation of Complex Geological Structures Using Multiple-point Statistics, Math Geo (2002).
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Test Case 1 – Training Results

Training set: 24000 realizations. Validation set: 6000 realizations.

13 minutes in a cluster with four GPUs (NVIDIA TESLA P100).

Reconstruction accuracy: 96.7%.

Original facies

Encoded representation

Reconstructed facies

x

z

x̂
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Test Case 1 – Testing the Decoder

Generated a new realization by sampling z ∼ N (0, I).

Added small random perturbations: zk+1 = zk + δz, where
δz ∼ N (0, 0.1× I).
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Test Case 1 – Data Assimilation (Facies Data)

MDA iterations: 4.

Ensemble size: 200.
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20
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Test Case 1 – Data Assimilation (Production Data)

Oil and water production
data.

MDA iterations: 4.

Ensemble size: 200.

Water rate
Pr

ior
Po

st
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Test Case 1 – Comparison with Previous Results

Reference

ES-MDA ES-MDA-OPCA[10] ES-MDA-DBN[11] ES-MDA-CVAE

[10]Emerick, A.A., Investigation on Principal Component Analysis Parameterizations for History Matching Channelized Facies
Models with Ensemble-based Data Assimilation, Math Geosci (2017).
[11]Canchumuni, S.W.A., Emerick, A.A. and Pacheco, M.A.C., History Matching Channelized Facies Models using Ensemble
Smoother with a Deep Learning Parameterization, ECMOR (2018).
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Test Case 2

Two-facies model generated with snesim.

100× 100 gridblocks.

Simultaneous update of facies and
permeability.

Training: 32000, validation: 8000.

Training time: 42 minutes?.

Ensemble size: 200, MDA iterations: 20.

Reference

ES-MDA ES-MDA-OPCA ES-MDA-DBN ES-MDA-CVAE

?Cluster with 4 GPUs (NVIDIA TESLA P100).

Emerick et al. ES with DSI and Deep Learning 14th EnKF Workshop 27 / 32



Test Case 3

3D channels (object-based simulation[12]).

3 facies: channel, levee and background.

100× 100× 10 gridblocks.

Training: 40000, validation: 10000.

Training time: 49 hours?.

Ensemble size: 200, MDA iterations: 20.

Reference

Prior ES-MDA-CVAE

[12]Deutsch, C.V. and Journel, A.G. GSLIB: Geostatistical Software Library and User’s Guide, Oxford University Press (1998).

?Cluster with 4 GPUs (NVIDIA TESLA P100).
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Test Case 3

Prior

Prior 1

ES-MDA-CVAE
Post 1
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Final Comments

Data-space inversion:
I Straightforward to apply.
I It may serve as a first approximation.
I It may be an useful for models with very complex geological description.

Deep learning parameterization:
I Promising results for facies models.
I So far we tested only in small models (∼ 104–105 gridblocks).
I It is unclear if it is going to be feasible in large-scale models (> 106

gridblocks).
I Current implementation does not allow distance-based localization.
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