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Sequential Bayesian inference

Non-Gaussian state-space model
I Model dynamics - transition kernel: xt ∼ f (·|xt−1)

I Observations - likelihood model: yt ∼ g(·|xt)

xtxt−1 xt+1

yt yt+1yt−1

x1x0

y1

Goal: Recursively estimate filtering distributions πt|t := π(xt |y1, . . . , yt)

Challenges of nonlinear filtering
I Complex (e.g., chaotic) dynamics with intractable kernels
I High-dimensional states, xt ∈ Rd for d ∼ O(106)

I Sparse observations in space and time
I Limited model evaluations available (e.g., small ensemble sizes)
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Ensemble filtering

State-of-the-art (tracking) results are typically found with the EnKF

Drawbacks with the EnKF
I Particles are constrained to a linear prior-to-posterior update
I Inconsistent for capturing Bayesian solution
I Modern implementations require extensive tuning for stability
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Stochastic map algorithm

Generalization of EnKF for inference step
Find a nonlinear map T that couples forecast πt|t−1 and analysis πt|t

Main Idea: Move samples without weights or resampling

I Learn T given M � d forecast samples x(i)t ∼ πt|t−1

I Generate analysis samples T (x(i)t ) ∼ πt|t for i = 1, . . . ,M
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Building block of Stochastic Map

Transport Maps [Parno and Marzouk, 2018]
I Deterministic coupling between densities π, η on Rd such that

π(x) = S]η(x) := η ◦ S(x)|det(∇S(x))|

I Generate cheap and independent samples x ∼ π ⇒ S(x) ∼ η

Densities Monte Carlo
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Triangular and monotone maps

Consider the Knothe-Rosenblatt rearrangement

S(x) =


S1(x1)

S2(x1, x2)
...

Sd(x1, x2, . . . , xd)


1 Coupling exists and is unique under mild conditions on π and η
2 For Gaussian η, find S by solving decoupled convex MLE problems

min
S

DKL(π||S]η) ⇔ min
Sk
Eπ
[
1
2
Sk(x)2 − log |∂kSk(x)|

]
∀k

I Given samples x(i) ∼ π, find Sk via

min
Sk

1
M

M∑
i=1

[
1
2
Sk(x(i))2 − log |∂kSk(x(i))|

]
s.t. ∂kSk > 0
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Triangular maps enable conditional sampling

3 Each component Sk characterizes one marginal conditional of π

π(x) = π(x1)π(x2|x1) · · ·π(xd |x1, . . . , xd−1)

I For π(y, x) and η(z1, z2), consider the triangular map

S(y, x) =

[
Sy(y)
Sx(y, x)

]
I The map x 7→ Sx(y∗, x) pushes π(x|y∗) to η(z2)
I Sx(y, x) pushes π(x, y) to η(z2)
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3 Each component Sk characterizes one marginal conditional of π

π(x) = π(x1)π(x2|x1) · · ·π(xd |x1, . . . , xd−1)

I For π(y, x) and η(z1, z2), consider the triangular map

S(y, x) =

[
Sy(y)
Sx(y, x)

]
I The map x 7→ Sx(y∗, x) pushes π(x|y∗) to η(z2)
I Sx(y, x) pushes π(x, y) to η(z2)

The analysis map that pushes π(y, x) to π(x|y∗) is given by

T (y, x) = Sx (y∗, ·)−1 ◦ Sx (y, x)
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Stochastic Map algorithm

Forecast step
1 Apply forward model to generate forecast ensemble x(i)t ∼ f (·|x(i)t−1)

Analysis step
1 Perturbed observations: Sample y(i)t ∼ g(·|x(i)t ) using forecast
2 Estimate lower-triangular map Ŝ that couples π(yt , xt) and N (0, I)

Ŝ(y, x) =

[
Ŝy(y)

Ŝx(y, x)

]

3 Compose maps T̂ (y, x) = Ŝx(y∗, ·)−1 ◦ Ŝx(y, x)

4 Generate analysis ensemble (xa
t )(i) = T̂ (y(i)t , x

(i)
t ) for i = 1, . . . ,M
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Numerical details of the Stochastic Map algorithm

Connection with the EnKF
I When restricting Sx to be affine, the map is the EnKF transformation

T (yt , xt) = xt − Σxt ,yt Σ−1
yt

(yt − y∗t ),

I Transport maps allow for the gradual introduction of nonlinear terms
I Nonlinearities in T capture non-Gaussian structure of π(yt , xt)

Example map parameterization
I Each component is the sum of nonlinear univariate functions

Sk(z1, . . . , zk) = u1(z1) + · · ·+ uk(zk),

where ui(z) = ui ,0z +
∑p

j=1 uij N (z ; ξj , σ
2
j ) and uk(zk) is monotone

I Could also use polynomial expansions (more later...)

Baptista (rsb@mit.edu) Filtering with local couplings 9 / 20

rsb@mit.edu


Performance of Stochastic Maps

Lorenz-63 model
I d = 3 with ∆tobs = 0.1 and fully-observed state
I Observations follow yt = xt + ηt with ηt ∼ N (0, 4I)
I Compare statistics to a particle filter (PF) with 1M samples

Takeaway: Nonlinearities improve tracking and are stable with ∆tobs
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I d = 3 with ∆tobs = 0.1 and fully-observed state
I Observations follow yt = xt + ηt with ηt ∼ N (0, 4I)
I Compare statistics to a particle filter (PF) with 1M samples

Takeaway: Nonlinearities improve posterior mean and variance estimates
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Estimating transport maps from samples

Theorem: Sparsity of triangular maps [Spantini et al., 2018]
Conditional independence of π defines functional dependence of Sk(x)

3

2

5

14

Markov structure of 5-dimensional distribution Sparsity of ∂jSk

1 2 3 4 T

φ σ β

Markov structure of stochastic volatility problem

Sparsity of ∂jSk
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Estimating transport maps from samples

Theorem: Sparsity of triangular maps [Spantini et al., 2018]
Conditional independence of π defines functional dependence of Sk(x)

Lorenz-96 model
I Estimate forecast covariance Ct|t−1 over 1000 assimilation cycles

1

2

3

4

5

6

7

8

9

10

Average C−1
t|t−1 Sparsity of C−1

t|t−1

In practice, distributions in filtering have ≈conditional independence
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The map is easy to “localize" in high dimensions

I Regularize the estimation of S by imposing sparsity in Ŝ :

Ŝ(x1, . . . , x4) =


Ŝ1(x1)

Ŝ2(x1, x2)

Ŝ3( , x2, x3)

Ŝ4( , x3, x4)


I Heuristic: Let Ŝk depend on neighborhood variables (xj)j<k that are

within a distance r from xk in state-space:

Ŝk(x1, . . . , xk) ≈ Ŝk(xNr (k), xk)

Approach: Parametrize sparsity with neighborhood size and tune
parameters by minimizing RMSE over many assimilation cycles
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Analysis map has another form of sparsity

I For local likelihood models T decays based on correlation length
I Sx also inherits decay and only needs to be partly estimated

y

S(x) =



S1(x1)
S2(x1, x2)

...
Sl(x1, . . . , xl)
xl+1
...
xd




Approximate Sk

as Sk(xNr (k), xk).


Reverts to identity

from decay of
correlation

Approach: Parametrize sparsity with neighborhood size and # of
non-Identity components and tune parameters by minimizing RMSE
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Performance of Stochastic Maps

Lorenz-96 model
I d = 40 with F = 8, ∆tobs = 0.4 (large!) and 20 observations
I Measure RMSE (left) and the coverage probability of the empirical

[2.5%,97.5%] quantiles (right) over 2000 assimilation cycles

Takeaway: Nonlinearities improve tracking given sufficient samples to
reliably learn parameters
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Learning maps with sparse structure

Linear Transport Maps
I Linear components: S(x) = Lx, with lower-triangular L
I Approximating density: π = S]η = N (0,C) where C−1 = LLT

Connection to Linear Regression
I Normalize diagonal: Sk(x) = Lkk(β1x1 + · · ·+ βk−1xk−1 + xk)

I Rewrite MLE optimization problem for linear map parameters:

min
Sk
Eπ
[1

2Sk(x)2 − log |∂kSk(x)|
]

I Using samples from π:

β̂ ∈ argmin
β

1
2M ‖x1:k−1 β+xk‖22, L̂kk =

(
1
M ‖x1:k−1β̂ + xk‖22

)−1/2

Proposed Approach: Add `1-penalty for sparse regression (LASSO):

β̂ ∈ argmin
β

1
2M ‖x1:k−1 β+xk‖22 + λn‖β ‖1
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Learning maps with sparse structure

Maps generalize to non-Gaussian densities
I E.g., Parametrize monotone nonlinear maps using:

Sk(x1:k) =
∑

j βjψj(x1:k−1) +
∫ xk
0 hα(x1:k−1, t)dt

I hα > 0 for strict monotonicity with respect to xk

I Add `1-penalty to learn sparsity of β,α parameters

Parameterizations cases
1 Gaussian conditionals with constant variance: hα = αk

I Sk(x1:k) =
∑

j βjψj + αkxk

2 Gaussian conditionals with variance depending on x1:k−1
I Sk(x1:k) =

∑
j βjψj + hα(x1:k−1)xk

3 Fully general monotone case
I Sk(x1:k) =

∑
j βjψj +

∫ xk

0 (
∑

j αjφj (x1:k−1, t))2dt
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Theoretical performance

Assumptions: Gaussian conditionals with hα = αk and sub-Gaussian π

Result: Out-of-sample performance

For polynomial maps of degree m and sparsity s, with high probability

Eπ
[
DKL

(
π(xk |x1:k−1) || Ŝ]kη

) ]
.

√
s2m log k

N

Takeaways
I Accurate estimation is feasible in high-dimensions with N � k
I From factorization property of density, error in conditionals ensures

DKL(π||Ŝ]η) . d

√
s2m log d

N

I `2 regularization requires N = O(k) samples for each component
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Transport maps for posterior inference

Linear Gaussian problem
I Prior: x ∼ N (µ,Σpr ) with exponential covariance
I Likelihood: Local observations y = Hx + ε with ε ∼ N (0, Γ)

Takeaway
I Learning sparse prior-to-posterior map T matches oracle scaling
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Two approaches for posterior sampling

x|y∗ ∼ (Ŝx)]η x|y∗ ∼ T̂]πy,x for T̂ = (Ŝx)−1 ◦ Ŝx

Takeaway
I Propagating forecast through composed maps has lower error
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Conclusion and Outlook

Summary

I Composed couplings to build nonlinear prior-to-posterior maps
I Demonstrated improved tracking and posterior moment statistics
I Regularized map estimation to learn sparse high-dimensional maps

Outlook on Future Work

I Explore optimal estimators for choosing nonlinearity given M samples
I Learn combination of sparse and low-rank structure in T

Preprint will be available soon!

Thank You
Supported by the Air Force Office of Scientific Research
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