High-dimensional Bayesian filtering with nonlinear local couplings

Ricardo Baptista, Daniele Bigoni, Alessio Spantini, Youssef Marzouk

Massachusetts Institute of Technology Department of Aeronautics & Astronautics

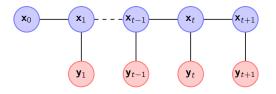
14th International EnKF Workshop Voss, Norway

June 4, 2019

Sequential Bayesian inference

Non-Gaussian state-space model

- ▶ Model dynamics transition kernel: $\mathbf{x}_t \sim f(\cdot|\mathbf{x}_{t-1})$
- ▶ Observations likelihood model: $\mathbf{y}_t \sim g(\cdot|\mathbf{x}_t)$



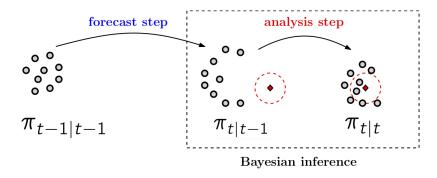
Goal: Recursively estimate filtering distributions $\pi_{t|t} := \pi(\mathbf{x}_t|\mathbf{y}_1,\ldots,\mathbf{y}_t)$

Challenges of nonlinear filtering

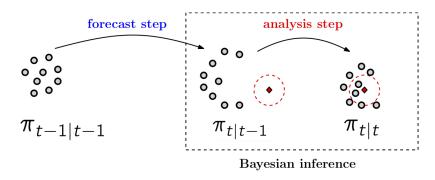
- ► Complex (e.g., chaotic) dynamics with intractable kernels
- ▶ High-dimensional states, $\mathbf{x}_t \in \mathbb{R}^d$ for $d \sim \mathcal{O}(10^6)$
- Sparse observations in space and time
- ▶ Limited model evaluations available (e.g., small ensemble sizes)

Baptista (rsb@mit.edu) Filtering with local couplings 2 / 20

Ensemble filtering



State-of-the-art (tracking) results are typically found with the EnKF



State-of-the-art (tracking) results are typically found with the EnKF

Drawbacks with the EnKF

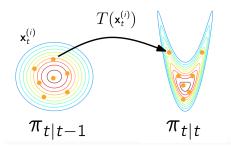
- ▶ Particles are constrained to a linear prior-to-posterior update
- ► Inconsistent for capturing Bayesian solution
- ► Modern implementations require extensive tuning for stability

Baptista (rsb@mit.edu) Filtering with local couplings 3 / 20

Stochastic map algorithm

Generalization of EnKF for inference step

Find a nonlinear map $\mathcal T$ that couples forecast $\pi_{t|t-1}$ and analysis $\pi_{t|t}$



Main Idea: Move samples without weights or resampling

- ▶ Learn T given $M \ll d$ forecast samples $\mathbf{x}_t^{(i)} \sim \pi_{t|t-1}$
- ▶ Generate analysis samples $T(\mathbf{x}_t^{(i)}) \sim \pi_{t|t}$ for i = 1, ..., M

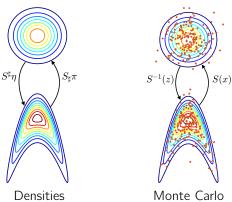
Building block of Stochastic Map

Transport Maps [Parno and Marzouk, 2018]

lacktriangle Deterministic coupling between densities π , η on \mathbb{R}^d such that

$$\pi(\mathbf{x}) = S^{\sharp} \eta(\mathbf{x}) := \eta \circ S(\mathbf{x}) |\det(\nabla S(\mathbf{x}))|$$

▶ Generate cheap and independent samples $\mathbf{x} \sim \pi \Rightarrow S(\mathbf{x}) \sim \eta$



Triangular and monotone maps

Consider the **Knothe-Rosenblatt rearrangement**

$$S(\mathbf{x}) = \begin{bmatrix} S_1(x_1) \\ S_2(x_1, x_2) \\ \vdots \\ S_d(x_1, x_2, \dots, x_d) \end{bmatrix}$$

- **①** Coupling exists and is unique under mild conditions on π and η
- $oldsymbol{0}$ For Gaussian η , find S by solving decoupled convex MLE problems

$$\min_{S} D_{KL}(\pi || S^{\sharp} \eta) \iff \min_{S_k} \mathbb{E}_{\pi} \left[\frac{1}{2} S_k(\mathbf{x})^2 - \log |\partial_k S_k(\mathbf{x})| \right] \forall k$$

• Given samples $\mathbf{x}^{(i)} \sim \pi$, find S^k via

$$\min_{S_k} \frac{1}{M} \sum_{i=1}^{M} \left[\frac{1}{2} S_k(\mathbf{x}^{(i)})^2 - \log |\partial_k S_k(\mathbf{x}^{(i)})| \right] \text{ s.t. } \partial_k S_k > 0$$

Triangular maps enable conditional sampling

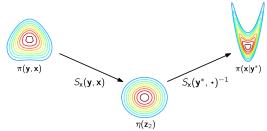
ullet Each component S_k characterizes one marginal conditional of π

$$\pi(\mathbf{x}) = \pi(x_1)\pi(x_2|x_1)\cdots\pi(x_d|x_1,\ldots,x_{d-1})$$

▶ For $\pi(\mathbf{y}, \mathbf{x})$ and $\eta(\mathbf{z}_1, \mathbf{z}_2)$, consider the triangular map

$$S(\mathbf{y}, \mathbf{x}) = \begin{bmatrix} S_{\mathbf{y}}(\mathbf{y}) \\ S_{\mathbf{x}}(\mathbf{y}, \mathbf{x}) \end{bmatrix}$$

- ▶ The map $\mathbf{x} \mapsto S_{\mathbf{x}}(\mathbf{y}^*, \mathbf{x})$ pushes $\pi(\mathbf{x}|\mathbf{y}^*)$ to $\eta(\mathbf{z}_2)$
- $S_{\mathbf{x}}(\mathbf{y}, \mathbf{x})$ pushes $\pi(\mathbf{x}, \mathbf{y})$ to $\eta(\mathbf{z}_2)$



Triangular maps enable conditional sampling

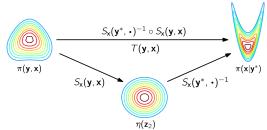
ullet Each component S_k characterizes one marginal conditional of π

$$\pi(\mathbf{x}) = \pi(x_1)\pi(x_2|x_1)\cdots\pi(x_d|x_1,\ldots,x_{d-1})$$

▶ For $\pi(\mathbf{y}, \mathbf{x})$ and $\eta(\mathbf{z}_1, \mathbf{z}_2)$, consider the triangular map

$$S(\mathbf{y}, \mathbf{x}) = \begin{bmatrix} S_{\mathbf{y}}(\mathbf{y}) \\ S_{\mathbf{x}}(\mathbf{y}, \mathbf{x}) \end{bmatrix}$$

- ▶ The map $\mathbf{x} \mapsto S_{\mathbf{x}}(\mathbf{y}^*, \mathbf{x})$ pushes $\pi(\mathbf{x}|\mathbf{y}^*)$ to $\eta(\mathbf{z}_2)$
- $S_{\mathbf{x}}(\mathbf{y}, \mathbf{x})$ pushes $\pi(\mathbf{x}, \mathbf{y})$ to $\eta(\mathbf{z}_2)$



Triangular maps enable conditional sampling

3 Each component S_k characterizes one marginal conditional of π

$$\pi(\mathbf{x}) = \pi(x_1)\pi(x_2|x_1)\cdots\pi(x_d|x_1,\ldots,x_{d-1})$$

▶ For $\pi(y, x)$ and $\eta(z_1, z_2)$, consider the triangular map

$$S(\mathbf{y}, \mathbf{x}) = \begin{bmatrix} S_{\mathbf{y}}(\mathbf{y}) \\ S_{\mathbf{x}}(\mathbf{y}, \mathbf{x}) \end{bmatrix}$$

- ▶ The map $\mathbf{x} \mapsto S_{\mathbf{x}}(\mathbf{y}^*, \mathbf{x})$ pushes $\pi(\mathbf{x}|\mathbf{y}^*)$ to $\eta(\mathbf{z}_2)$
- $S_{\mathbf{x}}(\mathbf{y}, \mathbf{x})$ pushes $\pi(\mathbf{x}, \mathbf{y})$ to $\eta(\mathbf{z}_2)$

The analysis map that pushes $\pi(\mathbf{y}, \mathbf{x})$ to $\pi(\mathbf{x}|\mathbf{y}^*)$ is given by

$$T(\mathbf{y}, \mathbf{x}) = S_{x}(\mathbf{y}^{*}, \cdot)^{-1} \circ S_{x}(\mathbf{y}, \mathbf{x})$$

Stochastic Map algorithm

Forecast step

1 Apply forward model to generate forecast ensemble $\mathbf{x}_t^{(i)} \sim f(\cdot | \mathbf{x}_{t-1}^{(i)})$

Analysis step

- **1** Perturbed observations: Sample $\mathbf{y}_t^{(i)} \sim g(\cdot|\mathbf{x}_t^{(i)})$ using forecast
- **2** Estimate lower-triangular map \hat{S} that couples $\pi(\mathbf{y}_t, \mathbf{x}_t)$ and $\mathcal{N}(\mathbf{0}, \mathbf{I})$

$$\widehat{S}(\mathbf{y}, \mathbf{x}) = \begin{bmatrix} \widehat{S}_{\mathbf{y}}(\mathbf{y}) \\ \widehat{S}_{\mathbf{x}}(\mathbf{y}, \mathbf{x}) \end{bmatrix}$$

- **3** Compose maps $\widehat{T}(\mathbf{y}, \mathbf{x}) = \widehat{S}_{\mathbf{x}}(\mathbf{y}^*, \cdot)^{-1} \circ \widehat{S}_{\mathbf{x}}(\mathbf{y}, \mathbf{x})$
- **3** Generate analysis ensemble $(\mathbf{x}_t^a)^{(i)} = \widehat{T}(\mathbf{y}_t^{(i)}, \mathbf{x}_t^{(i)})$ for i = 1, ..., M

Numerical details of the Stochastic Map algorithm

Connection with the EnKF

 \blacktriangleright When restricting S_x to be affine, the map is the EnKF transformation

$$T(\mathbf{y}_t, \mathbf{x}_t) = \mathbf{x}_t - \Sigma_{\mathbf{x}_t, \mathbf{y}_t} \Sigma_{\mathbf{y}_t}^{-1} (\mathbf{y}_t - \mathbf{y}_t^*),$$

- ▶ Transport maps allow for the gradual introduction of nonlinear terms
- ▶ Nonlinearities in T capture non-Gaussian structure of $\pi(\mathbf{y}_t, \mathbf{x}_t)$

Example map parameterization

► Each component is the sum of nonlinear univariate functions

$$S_k(z_1,\ldots,z_k)=\mathbf{u}_1(z_1)+\cdots+\mathbf{u}_k(z_k),$$

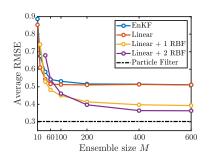
where $\mathbf{u}_i(z) = u_{i,0}z + \sum_{j=1}^p u_{ij} \mathcal{N}(z; \xi_j, \sigma_i^2)$ and $\mathbf{u}_k(z_k)$ is monotone

► Could also use polynomial expansions (more later...)

Performance of Stochastic Maps

Lorenz-63 model

- ▶ d = 3 with $\Delta t_{obs} = 0.1$ and fully-observed state
- ▶ Observations follow $\mathbf{y}_t = \mathbf{x}_t + \boldsymbol{\eta}_t$ with $\boldsymbol{\eta}_t \sim \mathcal{N}(\mathbf{0}, 4\mathbf{I})$
- ► Compare statistics to a particle filter (PF) with 1M samples



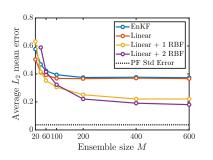


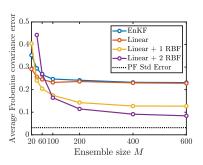
Takeaway: Nonlinearities improve tracking and are stable with Δt_{obs}

Performance of Stochastic Maps

Lorenz-63 model

- ▶ d = 3 with $\Delta t_{obs} = 0.1$ and fully-observed state
- ▶ Observations follow $\mathbf{y}_t = \mathbf{x}_t + \boldsymbol{\eta}_t$ with $\boldsymbol{\eta}_t \sim \mathcal{N}(\mathbf{0}, 4\mathbf{I})$
- ► Compare statistics to a particle filter (PF) with 1M samples



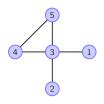


Takeaway: Nonlinearities improve posterior mean and variance estimates

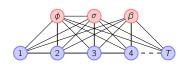
Estimating transport maps from samples

Theorem: Sparsity of triangular maps [Spantini et al., 2018]

Conditional independence of π defines functional dependence of $S_k(\mathbf{x})$

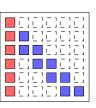


Markov structure of 5-dimensional distribution



Markov structure of stochastic volatility problem

Sparsity of $\partial_j S_k$



Sparsity of $\partial_i S_k$

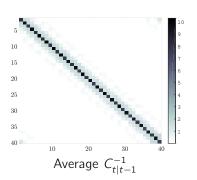
Estimating transport maps from samples

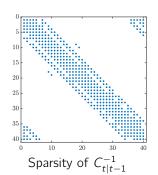
Theorem: Sparsity of triangular maps [Spantini et al., 2018]

Conditional independence of π defines functional dependence of $S_k(\mathbf{x})$

Lorenz-96 model

ightharpoonup Estimate forecast covariance $C_{t|t-1}$ over 1000 assimilation cycles





In practice, distributions in filtering have ≈conditional independence

Baptista (rsb@mit.edu) Filtering with local couplings 11 / 20

The map is easy to "localize" in high dimensions

▶ Regularize the estimation of S by *imposing sparsity* in \hat{S} :

$$\widehat{S}(x_1, \dots, x_4) = \begin{bmatrix} \widehat{S}_1(x_1) \\ \widehat{S}_2(x_1, x_2) \\ \widehat{S}_3(x_2, x_3) \\ \widehat{S}_4(x_3, x_4) \end{bmatrix}$$

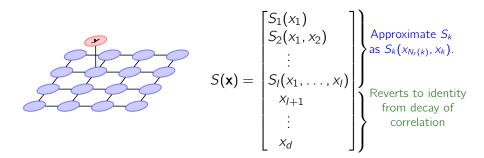
▶ **Heuristic**: Let \widehat{S}_k depend on neighborhood variables $(x_j)_{j < k}$ that are within a distance r from x_k in state-space:

$$\widehat{S}_k(x_1,\ldots,x_k)\approx \widehat{S}_k(x_{N_r(k)},x_k)$$

Approach: Parametrize sparsity with neighborhood size and tune parameters by minimizing RMSE over many assimilation cycles

Analysis map has another form of sparsity

- ► For local likelihood models *T* decays based on correlation length
- \triangleright S^{x} also inherits decay and only needs to be partly estimated

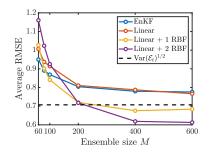


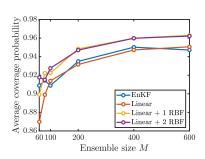
Approach: Parametrize sparsity with neighborhood size and # of non-Identity components and tune parameters by minimizing RMSE

Performance of Stochastic Maps

Lorenz-96 model

- ▶ d = 40 with F = 8, $\Delta t_{obs} = 0.4$ (large!) and 20 observations
- ▶ Measure RMSE (*left*) and the coverage probability of the empirical [2.5%,97.5%] quantiles (*right*) over 2000 assimilation cycles





Takeaway: Nonlinearities improve tracking given sufficient samples to reliably learn parameters

Linear Transport Maps

- ▶ Linear components: $S(\mathbf{x}) = \mathbf{L}\mathbf{x}$, with lower-triangular \mathbf{L}
- ▶ Approximating density: $\pi = S^{\sharp} \eta = \mathcal{N}(\mathbf{0}, \mathbf{C})$ where $\mathbf{C}^{-1} = \mathbf{L} \mathbf{L}^{T}$

Connection to Linear Regression

- Normalize diagonal: $S_k(x) = L_{kk}(\beta_1 x_1 + \cdots + \beta_{k-1} x_{k-1} + x_k)$
- ▶ Rewrite MLE optimization problem for linear map parameters:

$$\min_{S_k} \mathbb{E}_{\pi} \left[\frac{1}{2} S_k(\mathbf{x})^2 - \log |\partial_k S_k(\mathbf{x})| \right]$$

▶ Using samples from π :

$$\hat{\boldsymbol{\beta}} \in \arg\min_{\boldsymbol{\beta}} \frac{1}{2M} \|\mathbf{x}_{1:k-1}\boldsymbol{\beta} + \mathbf{x}_k\|_2^2, \quad \hat{L}_{kk} = \left(\frac{1}{M} \|\mathbf{x}_{1:k-1}\hat{\boldsymbol{\beta}} + \mathbf{x}_k\|_2^2\right)^{-1/2}$$

Linear Transport Maps

- ▶ Linear components: $S(\mathbf{x}) = \mathbf{L}\mathbf{x}$, with lower-triangular \mathbf{L}
- ▶ Approximating density: $\pi = S^{\sharp} \eta = \mathcal{N}(\mathbf{0}, \mathbf{C})$ where $\mathbf{C}^{-1} = \mathbf{L} \mathbf{L}^{T}$

Connection to Linear Regression

- Normalize diagonal: $S_k(x) = L_{kk}(\beta_1 x_1 + \cdots + \beta_{k-1} x_{k-1} + x_k)$
- Rewrite MLE optimization problem for linear map parameters:

$$\min_{L_{kk}>0, \boldsymbol{\beta}} \mathbb{E}_{\pi} \left[\frac{1}{2} L_{kk}^{2} (x_{1:k-1} \boldsymbol{\beta} + x_{k})^{2} - \log |L_{kk}| \right]$$

▶ Using samples from π :

$$\hat{\boldsymbol{\beta}} \in \operatorname*{arg\,min}_{\boldsymbol{\beta}} \frac{1}{2M} \|\mathbf{x}_{1:k-1}\boldsymbol{\beta} + \mathbf{x}_k\|_2^2, \quad \widehat{L}_{kk} = \left(\frac{1}{M} \|\mathbf{x}_{1:k-1}\hat{\boldsymbol{\beta}} + \mathbf{x}_k\|_2^2\right)^{-1/2}$$

Linear Transport Maps

- ▶ Linear components: $S(\mathbf{x}) = \mathbf{L}\mathbf{x}$, with lower-triangular \mathbf{L}
- ▶ Approximating density: $\pi = S^{\sharp} \eta = \mathcal{N}(\mathbf{0}, \mathbf{C})$ where $\mathbf{C}^{-1} = \mathbf{L} \mathbf{L}^{T}$

Connection to Linear Regression

- Normalize diagonal: $S_k(x) = L_{kk}(\beta_1 x_1 + \cdots + \beta_{k-1} x_{k-1} + x_k)$
- ▶ Rewrite MLE optimization problem for linear map parameters:

$$\min_{L_{kk}>0,\boldsymbol{\beta}} \mathbb{E}_{\pi} \left[\frac{1}{2} L_{kk}^{2} (x_{1:k-1} \boldsymbol{\beta} + x_{k})^{2} - \log |L_{kk}| \right]$$

▶ Using samples from π :

$$\hat{\boldsymbol{\beta}} \in \operatorname*{arg\,min}_{\boldsymbol{\beta}} \frac{1}{2M} \|\mathbf{x}_{1:k-1}\boldsymbol{\beta} + \mathbf{x}_k\|_2^2, \quad \widehat{L}_{kk} = \left(\frac{1}{M} \|\mathbf{x}_{1:k-1}\hat{\boldsymbol{\beta}} + \mathbf{x}_k\|_2^2\right)^{-1/2}$$

Proposed Approach: Add ℓ_1 -penalty for sparse regression (LASSO):

$$\hat{\boldsymbol{\beta}} \in \arg\min_{\boldsymbol{\beta}} \frac{1}{2M} \|\mathbf{x}_{1:k-1}\boldsymbol{\beta} + \mathbf{x}_k\|_2^2 + \lambda_n \|\boldsymbol{\beta}\|_1$$

Maps generalize to non-Gaussian densities

▶ E.g., Parametrize monotone nonlinear maps using:

$$S_k(\mathbf{x}_{1:k}) = \sum_j \beta_j \psi_j(\mathbf{x}_{1:k-1}) + \int_0^{x_k} h_{\alpha}(\mathbf{x}_{1:k-1}, t) dt$$

- $h_{\alpha} > 0$ for strict monotonicity with respect to x_k
- ▶ Add ℓ_1 -penalty to learn sparsity of β , α parameters

Parameterizations cases

- **1** Gaussian conditionals with constant variance: $h_{\alpha} = \alpha_k$
 - $S_k(\mathbf{x}_{1:k}) = \sum_j \beta_j \psi_j + \alpha_k x_k$
- **②** Gaussian conditionals with variance depending on $\mathbf{x}_{1:k-1}$
 - $S_k(\mathbf{x}_{1:k}) = \sum_j \beta_j \psi_j + h_{\alpha}(\mathbf{x}_{1:k-1}) x_k$
- Fully general monotone case
 - $S_k(\mathbf{x}_{1:k}) = \sum_j \beta_j \psi_j + \int_0^{x_k} (\sum_j \alpha_j \phi_j(\mathbf{x}_{1:k-1}, t))^2 dt$

Theoretical performance

Assumptions: Gaussian conditionals with $h_{\pmb{\alpha}} = \alpha_k$ and sub-Gaussian π

Result: Out-of-sample performance

For polynomial maps of degree m and sparsity s, with high probability

$$E_{\pi}\Big[D_{KL}\Big(\pi(x_k|\mathbf{x}_{1:k-1})||\widehat{S}_k^{\sharp}\eta\Big)\Big]\lesssim \sqrt{\frac{s^2m\log k}{N}}$$

Takeaways

- ▶ Accurate estimation is feasible in high-dimensions with $N \ll k$
- ▶ From factorization property of density, error in conditionals ensures

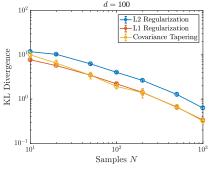
$$D_{KL}(\pi||\widehat{S}^{\sharp}\eta) \lesssim d\sqrt{\frac{s^2 m \log d}{N}}$$

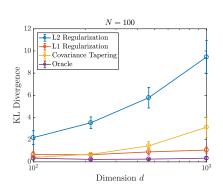
▶ ℓ_2 regularization requires $N = \mathcal{O}(k)$ samples for each component

Transport maps for posterior inference

Linear Gaussian problem

- ▶ *Prior*: $\mathbf{x} \sim \mathcal{N}(\mu, \Sigma_{pr})$ with exponential covariance
- ▶ *Likelihood*: Local observations $\mathbf{y} = \mathbf{H}\mathbf{x} + \boldsymbol{\epsilon}$ with $\boldsymbol{\epsilon} \sim \mathcal{N}(0, \Gamma)$

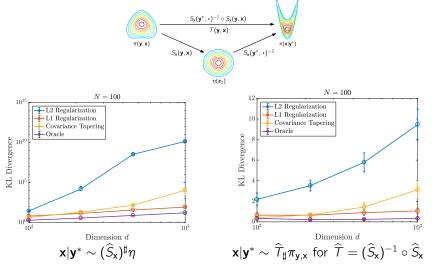




Takeaway

► Learning sparse prior-to-posterior map *T* matches oracle scaling

Two approaches for posterior sampling



Takeaway

▶ Propagating forecast through composed maps has lower error

Conclusion and Outlook

Summary

- Composed couplings to build nonlinear prior-to-posterior maps
- Demonstrated improved tracking and posterior moment statistics
- ▶ Regularized map estimation to learn sparse **high-dimensional maps**

Outlook on Future Work

- ightharpoonup Explore optimal estimators for choosing nonlinearity given M samples
- ► Learn combination of **sparse and low-rank** structure in *T*

Preprint will be available soon!

Conclusion and Outlook

Summary

- Composed couplings to build nonlinear prior-to-posterior maps
- Demonstrated improved tracking and posterior moment statistics
- ▶ Regularized map estimation to learn sparse **high-dimensional maps**

Outlook on Future Work

- ► Explore *optimal estimators* for choosing nonlinearity given *M* samples
- ▶ Learn combination of **sparse and low-rank** structure in *T*

Preprint will be available soon!

Thank You

Supported by the Air Force Office of Scientific Research

References I

- Parno, M. D. and Marzouk, Y. M. (2018).
 Transport map accelerated markov chain monte carlo.

 SIAM/ASA Journal on Uncertainty Quantification, 6(2):645–682.
- Spantini, A., Baptista, R., and Marzouk, Y. (2019).
 Coupling techniques in nonlinear ensemble filtering: non-Gaussian generalizations of the EnKF.

 preprint.
- Spantini, A., Bigoni, D., and Marzouk, Y. (2018). Inference via low-dimensional couplings.

 The Journal of Machine Learning Research, 19(1):2639–2709.