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Sequential Bayesian inference

Non-Gaussian state-space model
» Model dynamics - transition kernel: x; ~ f(+|x¢—1)
» Observations - likelihood model: y; ~ g(-|x¢)

y1 Yi—-1 Yt Yt+1

Goal: Recursively estimate filtering distributions s := m(Xe|y1, ..., Yt)

Challenges of nonlinear filtering

v

Complex (e.g., chaotic) dynamics with intractable kernels

» High-dimensional states, x; € R? for d ~ O(10°)

» Sparse observations in space and time

» Limited model evaluations available (e.g., small ensemble sizes)
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Ensemble filtering
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Bayesian inference

State-of-the-art (tracking) results are typically found with the EnKF
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Bayesian inference
State-of-the-art (tracking) results are typically found with the EnKF

Drawbacks with the EnKF
» Particles are constrained to a linear prior-to-posterior update
» Inconsistent for capturing Bayesian solution

» Modern implementations require extensive tuning for stability
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Stochastic map algorithm

Generalization of EnKF for inference step
Find a nonlinear map T that couples forecast m;_; and analysis 7¢;

Main Idea: Move samples without weights or resampling
» Learn T given M < d forecast samples x(ti) ~ i1
» Generate analysis samples T(xgi)) ~ Ty fori=1,..., M

Baptista (rsbemit.edu) Filtering with local couplings 4 /20


rsb@mit.edu

Building block of Stochastic Map

Transport Maps [Parno and Marzouk, 2018]

» Deterministic coupling between densities 7, 7 on R? such that
m(x) = S'n(x) := n o S(x)|det(VS(x))|

» Generate cheap and independent samples x ~ T = S(x) ~ 7

Densities Monte Carlo
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Triangular and monotone maps

Consider the Knothe-Rosenblatt rearrangement

51 (Xl)
So(x1, x2)

@ Coupling exists and is unique under mild conditions on 7 and 7
© For Gaussian m, find S by solving decoupled convex MLE problems

) ) 1
min Dk (7]|SMn) < min Ex [QSk(x)2 — log |6k5k(x)|] Vk
k
» Given samples x() ~ 7, find S¥ via
M
o1 1 Y i
n;lkn M;LSk(X( )) —log |6k5k(x( ))|] s.t. OkSk >0
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Triangular maps enable conditional sampling

© Each component S, characterizes one marginal conditional of 7
m(x) = w(x)m(xalx1) - w(Xalx1, ... Xa-1)

» For m(y,x) and n(z1, z»), consider the triangular map

00 (35

» The map x — S(y*, x) pushes 7(x|y*) to n(z>)
> S«(y. x) pushes m(x,y) to n(z2)

m(y,x) \ / m(x|y*)
(v.%) Se(y*, )7t

n(z2)
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Triangular maps enable conditional sampling

© Each component Sy characterizes one marginal conditional of
m(x) = w(x)m(xalx1) - w(xalxa, .. Xd—1)

» For m(y,x) and n(z1, z»), consider the triangular map

00 35k

» The map x — S(y*, x) pushes m(x|y*) to n(z2)
> S¢(y.x) pushes m(x,y) to n(z2)

The analysis map that pushes 7(y, x) to m(x|y*) is given by

T(y.x) = Sc(y*,-) " o Si(y. %)
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Stochastic Map algorithm

Forecast step

© Apply forward model to generate forecast ensemble x(ti) ~ f(~|x(t'21)

Analysis step

(1)

@ Perturbed observations: Sample y;’ ~ g(-|x(ti)) using forecast

@ Estimate lower-triangular map S that couples m(y¢, x¢) and A(0, 1)

S0x) = Eg))]

© Compose maps ?(y,x) =S (v, )7t §
(¥

o S5(y,
@ Generate analysis ensemble (x3)() = T § (i)) fori=1,..., M
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Numerical details of the Stochastic Map algorithm

Connection with the EnKF
» When restricting Sy to be affine, the map is the EnKF transformation

T(Ye.Xe) = Xe — Ty, Ty, (Ve — VE),
» Transport maps allow for the gradual introduction of nonlinear terms

» Nonlinearities in T capture non-Gaussian structure of m(y¢, X¢)

Example map parameterization
» Each component is the sum of nonlinear univariate functions

Sk(Zl ..... Zk) = U1(21)+ "‘+Uk(Zk),

where u;(z) = ujoz + Y7, uj N(z;§;,07) and uk(zx) is monotone

» Could also use polynomial expansions (more later...)
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Performance of Stochastic Maps

Lorenz-63 model

» d = 3 with Atyps = 0.1 and fully-observed state
» Observations follow y; = x; + n; with n; ~ N(0, 41)
» Compare statistics to a particle filter (PF) with 1M samples
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Takeaway: Nonlinearities improve tracking and are stable with Atgps
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Performance of Stochastic Maps

Lorenz-63 model
» d = 3 with Atyps = 0.1 and fully-observed state

» Observations follow y; = x; + n; with n; ~ N(0, 41)

» Compare statistics to a particle filter (PF) with 1M samples
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Takeaway: Nonlinearities improve posterior mean and variance estimates
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Estimating transport maps from samples

Theorem: Sparsity of triangular maps [Spantini et al., 2018
Conditional independence of 7 defines functional dependence of Si(x)
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Markov structure of stochastic volatility problem

Sparsity of 9;Sx
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Estimating transport maps from samples

Theorem: Sparsity of triangular maps [Spantini et al., 2018
Conditional independence of 7 defines functional dependence of Sk(x)

Lorenz-96 model

» Estimate forecast covariance Cy ;1 over 1000 assimilation cycles

]

10 20 30 40 0 10 20 30

Average C;‘tlfl Sparsity of Ct7|t171

In practice, distributions in filtering have ~conditional independence
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The map is easy to “localize" in high dimensions

» Regularize the estimation of S by imposing sparsity in S:

o~

S(Xl,...,X4) =

A)én\)f)ﬁ)ﬁ)
R
g

» Heuristic: Let Sy depend on neighborhood variables (x;);<x that are
within a distance r from x, in state-space:

~ ~

Sk(Xl, . ,Xk) ~ Sk(XNr(k):Xk)

Approach: Parametrize sparsity with neighborhood size and tune
parameters by minimizing RMSE over many assimilation cycles
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Analysis map has another form of sparsity

» For local likelihood models T decays based on correlation length

» S* also inherits decay and only needs to be partly estimated

[S1(x1)
- So(x1, x2) Approximate Sk
. as Sk(Xn, k), Xk)-

Reverts to identity
from decay of
correlation

Xd

Approach: Parametrize sparsity with neighborhood size and # of
non-ldentity components and tune parameters by minimizing RMSE
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Performance of Stochastic Maps

Lorenz-96 model
» d =40 with F =8, Atyps = 0.4 (large!) and 20 observations

» Measure RMSE (/eft) and the coverage probability of the empirical
[2.5%,97.5%] quantiles (right) over 2000 assimilation cycles
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Takeaway: Nonlinearities improve tracking given sufficient samples to
reliably learn parameters
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Learning maps with sparse structure

Linear Transport Maps
» Linear components: S(x) = Lx, with lower-triangular L
» Approximating density: m = Sfn = A/(0, C) where C~! = LL7

Connection to Linear Regression
» Normalize diagonal: Si(x) = Lik(B1x1 + - -+ + Bk—1Xk—1 + Xk)
» Rewrite MLE optimization problem for linear map parameters:

rr;in Er[3Sk(x)? — log [0k Sk(x)|]
k
» Using samples from :

N . ~ R ~1/2
B e argﬁmm st Xiko1B +xkl3, Lk = <%”X1:k71ﬁ +Xk||§>
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Learning maps with sparse structure

Linear Transport Maps
» Linear components: S(x) = Lx, with lower-triangular L
» Approximating density: m = Sfn = A/(0, C) where C~! = LL7

Connection to Linear Regression
» Normalize diagonal: Si(x) = Lik(B1x1 + - -+ + Bk—1Xk—1 + Xk)
» Rewrite MLE optimization problem for linear map parameters:

nin E *1L2 Xq- [’—i—X 2—|O L
L>008 s [2 kk( 1:k—1 k) g | kk”
> Using samples from

N . ~ R ~1/2
B e argﬁmm st Xiko1B +xkl3, Lk = <%”X1:k71ﬁ +Xk||§>

Proposed Approach: Add £;-penalty for sparse regression (LASSO):

Be argﬁmin alxi—1B8 4+xl3 + Xnll B 11
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Learning maps with sparse structure

Maps generalize to non-Gaussian densities

» E.g., Parametrize monotone nonlinear maps using:

Sk(x1:k) = X2 Bij(xk-1) + Jo* ha(X1:k—1, t)dt
» hy > 0 for strict monotonicity with respect to xx

» Add £;-penalty to learn sparsity of B, a parameters

Parameterizations cases
@ Gaussian conditionals with constant variance: hg = ok
> Sk(xwk) = D2 BiY) + akxk
© Gaussian conditionals with variance depending on Xj.x—1
> Sk(x1:k) = D2 Bjj + ha(X1:k—1)xk
© Fully general monotone case
> Sk(xak) = 2895 + fo () o (xk-1, 1)) dt
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Theoretical performance

Assumptions: Gaussian conditionals with h, = aj and sub-Gaussian T

Result: Out-of-sample performance

For polynomial maps of degree m and sparsity s, with high probability

Er [ Dk (7T(Xk|X1:k—1) [ §£?7> ] < \/@

» Accurate estimation is feasible in high-dimensions with N < k

Takeaways

» From factorization property of density, error in conditionals ensures

~ 2mlog d
Dy (| SPn) S oy =20

» {5 regularization requires N = O(k) samples for each component
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Transport maps for posterior inference

Linear Gaussian problem
» Prior. x ~ N(u, Xpr) with exponential covariance

» Likelihood: Local observations y = Hx + € with € ~ N(0,T)

d =100
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Takeaway

» Learning sparse prior-to-posterior map T matches oracle scaling
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Two approaches for posterior sampling

N =100

101

1010

KL Divergence

3 L2 Regularization
—3-L1 Regularization
Covariance Tapering

-3 Oracle

Dimension d

xly* ~ (50

Takeaway
» Propagating forecast through composed maps has lower error
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T(y.x)

Filtering with local couplings

) o Sily.x) v
/ mixly
Sy

N =100

3-12 Regularization
—4—L1 Regularization
Covariance Tapering,

—4—Oracle

KL Divergence
>

0of o

10?

Dimension d
~ ~

x|y* ~ ﬂwy,x for T = (5¢)7to5

19 /20


rsb@mit.edu

Conclusion and Outlook

» Composed couplings to build nonlinear prior-to-posterior maps
» Demonstrated improved tracking and posterior moment statistics

» Regularized map estimation to learn sparse high-dimensional maps

Outlook on Future Work

» Explore optimal estimators for choosing nonlinearity given M samples
» Learn combination of sparse and low-rank structure in T

Preprint will be available soon!
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