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Rank deficiency of the EnKF The Kalman filter

The ensemble Kalman filter analysis

I We focus on the Kalman filter analysis step:

K = BHT
(
R + HBHT

)−1
, (1)

xa = xb + K (y−Hxb) , (2)
Pa = (I−KH) B, (3)

I In the EnKF, the statistics are carried through by the ensemble
{

xi, i = 1 . . . Ne
}
:

xb = x, (4)

B = XXT, (5)

where x is the ensemble mean and X is the normalised anomaly matrix.
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Rank deficiency of the EnKF Rank deficiency and localisation

Rank deficiency of the EnKF

I The matrix XXT has rank limited by Ne − 1, too small to accurately represent B in a
high-dimensional system (Nx � Ne).

I When Ne is too small, XXT is characterised by large sampling errors, which often
take the form of spurious correlations at long distance.

I A common solution is to use localisation: either make the analysis local (domain
localisation) or use a localised B (covariance localisation).

domain localisation covariance localisation
relies on a collection of local analyses relies on a localised background error B

embarrassingly parallel no obvious parallelisation of the perturbation update
ad hoc treatment of non-local observations rigourous treatment of non-local observations
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Rank deficiency of the EnKF Rank deficiency and localisation

Covariance localisation in the deterministic EnKF

The (exact) LEnSRF

Regularise XXT with a localisation matrix ρ:

B = ρ ◦
(
XXT

)
. (6)

Update the perturbation as:

T = I + BHTR−1H, (7)

Xa = T−1/2X. (8)

I First focus: efficient implementation (accuracy/speed) of the perturbation update.

I Second focus: consistency (how well does XaXT
a match Pa) of the perturbation

update.
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The LEnSRF with augmented ensembles The augmented ensemble

Using an augmented ensemble to represent B

I In the analysis step, we choose to compute N̂e > Ne perturbations X̂ such that
B = ρ ◦XXT ≈ X̂X̂T. There are two methods.

The modulation method

Suppose that there is a matrix W with Nm columns such that ρ ≈WWT. Let X̂ be the
matrix with NmNe columns: [

X̂
]jNe+i

n
= [W]jn [X]in . (9)

The random svd method

Compute the truncated svd B = ρ ◦
(
XXT

)
≈ UΣUT with Nm columns, and form the matrix

X̂ = UΣ1/2.
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The LEnSRF with augmented ensembles The augmented ensemble

The modulation method

1: Compute the modulation product X̂ = W∆X[
X̂
]jNe+i

n
= [W]jn [X]in . (10)

I This is a mix between a Schur product (for the state variable index n) and a tensor
product (for the ensemble indices i and j). [Buehner, 2005]

I The modulation product is based on a factorisation property shown by [Lorenc, 2003]
and is currently used for covariance localisation [e.g., Bishop et al., 2017], including in
operational centers [e.g., Arbogast et al., 2017].
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The LEnSRF with augmented ensembles The augmented ensemble

The random svd method

1: Compute the truncated svd B = ρ ◦
(
XXT

)
≈ UΣUT with Nm columns.

2: Form the matrix X̂ = UΣ1/2.

I The matrix B is sparse, which means that efficient (and parallelisable) methods can
be used to compute the truncated svd, e.g., the random svd algorithm of [Halko et al.,
2011].

[Farchi and Bocquet, 2019]
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The LEnSRF with augmented ensembles Update the perturbations

Compute the updated perturbations

I How to obtain Ne updated members using the N̂e analysis perturbations X̂a of the
augmented ensemble?
I A solution is to use the augmented ensemble to compute an approximate
left-transform update of the (non-augmented) ensemble as follows:

Xa =
(
I + BHTR−1H

)−1/2
X, (11)

Xa =
(
I + X̂X̂THTR−1H

)−1/2
X, (12)

Xa =
{

I− X̂
(

I + ŶTR−1Ŷ +
(
I + ŶTR−1Ŷ

)1/2
)−1

ŶTR−1Ĥ

}
X, (13)

where Ŷ = HX̂.

I The linear algebra is performed in the augmented ensemble space (i.e., using N̂e × N̂e
matrices) using the formula derived by [Bocquet, 2016], later used by [Bishop et al.,
2017] under the name gain form of the ETKF.
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The LEnSRF with augmented ensembles Numerical illustration: the Lorenz 1996 model

The Lorenz 1996 model

I We use the L96 model with Nx = 400 variables:
dxn

dt
= (xn+1 − xn−2)xn−1 − xn + 8, n = 1 . . . Nx. (14)

I The observations are given every ∆t = 0.05 by

y = x + v, v ∼ N (0, I) . (15)

I The localisation matrix is constructed using the Gaspari–Cohn function, assuming
that the grid points are equally distributed in space.

I All algorithms use an ensemble of Ne = 10 members.

I The runs are 2× 104∆t long and our criterion is the time-average analysis RMSE.
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The LEnSRF with augmented ensembles Numerical illustration: the Lorenz 1996 model

Results with the L96 model
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I Both methods can yield similar RMSE scores as the LETKF.

I The modulation method requires a larger augmented ensemble size to yield similar
RMSE scores as the random svd method.

I For a given level of RMSE score, the random svd method is faster than the
modulation method.

[Farchi and Bocquet, 2019]
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The LEnSRF with augmented ensembles Numerical illustration: the multi-layer Lorenz 1996 model

A multilayer extension of the L96 model

I We introduce the mL96 model, that consists of Pz = 32 coupled layers of the L96
model with Ph = 40 variables:

dx(z, h)

dt
=
(
x(z, h+1) − x(z, h−2)

)
x(z, h−1) − x(z, h) + Fz

+ δ{z>0}
(
x(z−1, h) − x(z, h)

)
+ δ{z<Pz}

(
x(z+1, h) − x(z, h)

)
. (16)

I The forcing term linearly decreases from F1 = 8 to F32 = 4.
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The LEnSRF with augmented ensembles Numerical illustration: the multi-layer Lorenz 1996 model

Satellite observations for the mL96 model

I Each column is observed independently via:

yc, h =
Pz∑

z=1

[Ω]c, z xz, h + vc, h, vc, h ∼ N (0, 1) , (17)

where Ω is a weighting matrix with Nc = 8 channels that
is designed to mimic satellite radiances.

I The 8× 40 observations are available every ∆t = 0.05.

I The runs are 104∆t long.

I All algorithms use an ensemble of Ne = 8 members.
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Covariance localisation (with augmented ensembles) is used only in the vertical
direction. Domain localisation (LETKF-like) is used in the horizontal direction.
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The LEnSRF with augmented ensembles Numerical illustration: the multi-layer Lorenz 1996 model

Results with the mL96 model

I Using covariance localisation in the vertical
direction yields better RMSE scores than the LETKF.

I The modulation method requires a larger
augmented ensemble size to yield similar RMSE
scores as the random svd method.

I Both methods benefit from the parallelisation of
the local analyses, but the parallelisation potential of
the random svd method is not fully exploited
because of our limited computational platform.

[Farchi and Bocquet, 2019]
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The LEnSRF with augmented ensembles Numerical illustration: the multi-layer Lorenz 1996 model

Conclusions related to the augmented ensembles

I We have shown how to use augmented ensembles to implement covariance
localisation in the deterministic EnKF.

I We have proposed an alternative to the modulation method to construct the
augmented ensemble, based on the random svd algorithm.

I We have compared both methods using the L96 model and a multilayer extension of
the L96 model with satellite-like observations.

I We have shown that the augmented ensemble size need to be smaller with the
random svd method than with the modulation method.

I We have seen that using domain localisation in the horizontal and covariance
localisation in the vertical seems to be an adequate approach to assimilate satellite
radiances in a spacially extended model.
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A new perturbation update scheme Improving the consistency of the perturbation update

Failed deterministic sampling

I The perturbation update of the LEnSRF:

T = I + BHTR−1H, (18)

Xa = T−1/2X. (19)

I A first source of inconsistency lies in the fact that B 6= XXT.

I A potential fix: apply the left-transform to X̃, defined as the Ne dominant modes of
B = ρ ◦

(
XXT), for which B ≈ X̃X̃T.

I Empirically, this fix systematically makes the EnKF diverge. Intuitively, this comes
from a double application of localisation.
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A new perturbation update scheme Improving the consistency of the perturbation update

A new approach

I For the LEnSRF update, instead of using the left-transform it could be more
consistent with how the perturbations are defined to look for a low-rank perturbation
matrix Xa such that

Pa ≈ ρ ◦
(
XaXT

a
)
. (20)

A solution of Eq. (20) trades the accuracy of the representation of the long range
covariances (which may eventually be discarded at the next cycle) for a potentially
better accuracy of the short range covariances.

I In this context, the goal is to solve the optimisation problem

Xa = arg min
rank(X)≤Ne−1

L (X) , with L (X) = ln
∥∥ρ ◦ (XXT)−Pa

∥∥
F
, (21)

where ‖∗‖F is the Frobenius matrix norm.

[Bocquet and Farchi, 2019]
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A new perturbation update scheme Improving the consistency of the perturbation update

A new approach

I This problem is similar to a weighted low-rank approximation (WLRA) problem. We
expect that it has no tractable solution as opposed to the unweighted case for which the
Eckart-Young solution holds.

I However, the gradient of the cost function can be computed:

∇L (X) = 2 ‖∆‖−2
F (ρ ◦∆) X, (22)

with ∆ = ρ ◦
(
XXT)−Pa.

I Therefore, a local solution can be found using a gradient-based minimisation
algorithm.
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A new perturbation update scheme Numerical cost of computing the gradient and the cost function

Computing the gradient and the cost function

I We use a mode expansion with N̂e modes for the analysis error covariance matrix:
Pa ≈ X̂aX̂T

a .

I To compute L and ∇L, we use the (classical) formula

ρ ◦
(
XXT) · v =

Ne∑
i=1

X(i) ◦
[
ρ ·
(
X(i) ◦ v

)]
, (23)

for any matrix X of size Nx ×Ne and any vector v of size Nx, and where X(i) is the
i-th column of X.

I Therefore, the numerical cost of computing L and ∇L is:

O
(
NeN̂eNxNb

)
if ρ is banded with bandwidth Nb;

O
(
NeN̂eNxlnNx

)
if ρ is homogeneous.

I The numerical cost can be reduced by a factor Ne or N̂e if Eq. (23) is computed in
parallel.
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A new perturbation update scheme Numerical illustrations: the L96 and the KS models

The Lorenz 1996 and the Kuramoto–Sivashinsky models
I We use the L96 model with Nx = 40 variables, in the same configuration as in the
previous test series.
I As a complement, we use the KS model:

∂tu = −u∂xu− ∂2
xu− ∂4

xu. (24)

Equation (24) is solved over the domain x ∈ [0, 32π] using a pseudo-spectral integration
with Nx = 128. For this model, the observations are given every ∆t = 1 by

y = x + v, v ∼ N (0, I) . (25)

I For both models, the localisation matrix is constructed using the Gaspari–Cohn
function, assuming that the grid points are equally distributed in space.

I The runs are 2× 104∆t long and our criterion is the time-average analysis RMSE.

I We compare:
the LETKF algorithm;
the LEnSRF algorithm (exact left transform update);
the new LEnSRF algorithm (new perturbation update scheme).
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A new perturbation update scheme Numerical illustrations: the L96 and the KS models

Accuracy for the L96 model and KS models
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(bottom). The RMSE, optimal localisation and optimal inflation are plotted as functions of the ensemble size Ne.

[Bocquet and Farchi, 2019]
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A new perturbation update scheme Numerical illustrations: the L96 and the KS models

Robustness of the new scheme
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[Bocquet and Farchi, 2019]
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A new perturbation update scheme Numerical illustrations: the L96 and the KS models

Conclusions related to the new perturbation update scheme

I The updated perturbations in the local EnKFs based on covariance localisation (in
particular the LEnSRF) are not the main modes of Pa ( 6= LETKF).

I We have proposed a perturbation update scheme potentially more consistent such
that the perturbations X are related to the error covariance matrix by P ≈ ρ ◦

(
XXT)

throughout the EnKF:

Xa = arg min
rank(X)≤Ne−1

L (X) , with L (X) = ln
∥∥ρ ◦ (XXT)−Pa

∥∥
F
, (26)

I We have compared numerically the new LEnSRF to the LETKF and to the LEnSRF
(with the exact left-transform update), using the L96 and the KS models.

I We have shown that for both models, the requirement for residual multiplicative
inflation is much weaker with the new LEnSRF than with both the LETKF and the
LEnSRF: much weaker imbalance of the new update scheme?

I Moreover, there is an accuracy improvement of up to 6% in the analysis RMSE in
mildly nonlinear conditions, which is significant in these very well tuned configurations.
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