EnKF - FAQ

(Ensemble Kalman filter — Frequently asked questions)

—e

Patrick N. Raanes, Geir Evensen, Andreas S. Stordal
Marc Bocquet, Alberto Carrassi

“RCE i Qcerea
§9£|R5§/§ L') @ NordForsk & ;“D‘:

EnKF workshop, Voss, June 4, 2019




Received: 25 January 2018 | Revised: 03 July 2018 | Accepted: 18 July 2018

DOI: 10.1002/93.3386

Quarterly Journal of the ERMers
RESEARCH ARTICLE Royal Meteorological Society :

Adaptive covariance inflation in the ensemble Kalman filter
by Gaussian scale mixtures

Patrick N. Raanes'® | Marc Bocquet?® | Alberto Carrassi'

Nansen Enviro

ntal and Remote Sensing

nter, Bergen

This paper studies multiplicative inflation: the complementary scaling of the state

Also answered these questions about the EnKF:
m Why do we use (N — 1) in 25 3, (2, — )% ?
m About nonlinearity:

m Why does it create sampling error?
m Why does it cause divergence?
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Also answered these questions about the EnKF:
m Why do we prefer the Kalman gain "form"?
m About ensemble linearizations:

m What are they?
m Why is this rarely discussed?

m How does it relate to analytic derivatives?



Ensemble linearizations



Traditional EnKF presentation

Recall the KF gain:
-1
K =C,H" (HCwHT + R) :
15% idea: substitute Cp < Cyp = ﬁXXT
o -1
— K=C,H (HCwH +R)
-1
=XYT(YY + (N-1)R)
with Y = HX

= H(X)
= H(E) — mean.

2" idea: use eqn. (6) also in nonlinear case (when AH).



What is the ensemble’s linearization?

Recall Cp = 527 XXT and suppose H is nonlinear.

1 T_ea |’
5 XYT =C,H

Question: Is there a matrix H such that T
ﬁYYT = HC_H

Answer: Yes (mostly): H=YXT.

Follow up questions:
m How come this is rarely discussed?
= Why YX* ?

m Does it relate to the analytic derivative (H') ?



Does H = YX™ relate to H' ?

Theorem:  lim H = E[H ()]
N—oo
= lim YX* = Cy,C,*
N—oo
= lim YXT(XXT)! (by Stein/IBP)
—00
o= AL
= Ji2,Gn T

= Cwaa_Cl (a.s., by Slutsky, sub. to reg.)
l.e. H may (indeed) be called the “average" derivative.
Assumptions:
m Ensemble (behind H) and a share the same distribution.

m This is Gaussian.



How come H = YX™ is rarely discussed?

Substitute H + H in K:
K =C, A (AC,H' +R)’ (7)
= XY (YT YT + (N-1)R) ', (8)
where IIxt = XX, which is scary... But IIxr
B is just a projection;
m vanishes if A is linear, or (N—1) < M;
m is present for any/all linearization of H;

Why H = YX* ?
H is:
m Linear least-squares (LLS) estimate of H given Y and X.
m BLUE?
= MVUE ?

H is LLS because K is LLS, and the chain rule applies.



Why the “gain form™?



Not equivalent when (N—1) < M:
P _[I- KH|B
P=B +HR'H)'
Why is the Kalman gain form (9) better?
Note that eqn. (10) follows from
prior o< exp[—3 (z — z) B+(m — )],

which is “flat” in the directions outside of col(B).

= eqn. (10) yields “opposite” of the correct update.

(11)

Note: further complications in case P not defined in eqn. (10).



X2

Likelihood

Prior (ens and contour)
Post. using K-gain
Post. using p-inv

X1



Nonlinearity,

sampling error, and divergence.



Aim: study sampling error,
due to nonlinearity,
without worrying about

non-Gaussianity.

MLin(x) = \/§$7
MNonLin(m) = \/EF/\?’l (FX(mQ))




Motivational problem
prior = N ([0, 2 ),
likelihood = N(0]z, 2) ,
—> posterior = N (2| 0, 1).

dyn. model = M\ in(z) = v/2xdyn. model :M:%dyn. model

0 20 40 60 80 100
DA cycle (i.e. time) index



Sampling error from nonlinearity — why?

Consider the error

in the m-th sample moment

of the forecast (f) ensemble,
propagated by a degree-d model.
It can be shown that

md
Errorf, = Z Ch,iErrorf (12)
i=1
i.e. the moments get coupled, which defeats moment-matching.



Riccati recursion

Assume constant, linear dynamics (M), Q =0, H=1,

and a deterministic EnKF.

The ensemble covariance obeys:

m Forecast: B, = M?P;_;. (13)
m Analysis: P, = (I - K;)B; (14)
« P, =B, +R'. (15)

= The “Riccati recursion”:

P, = (M2P, ;) '+ R (16)



Attenuation

Stationary Riccati:
P = (M?P.) ' +R!

— — p— _ _2 H
e P,-K.R, Km:{I M™ ifM 21,

0 otherwise.

Initial conditions (ICs) don't appear
= |Cs are “forgotten”.
= Sampling error is attenuated.

(17)

(18)



Why (N —1) ?
Suppose we re-define the EnKF algorithm to use a different

normalization factor, i.e.

P.Py = N . XOXO = aPrLaPy.

But,

the ensemble forecast yields B, = M?’P;_, ,

the analysis using B, yields 15,;1 = E,;l +RL.

— The Riccati recursion: 15,;1 = (M215k,1)_1 +R!

Note: « does not appear.
— its impact is attenuated, just like ICs.

k—o0
k—oo

(19)

(20)
(21)
(22)



Filter divergence
Recall Riccati:

P,= (I-K;) M°P;_;. (23)

————
—>M—2

k—oo

Now consider §Py. Its recursion is:
0P~ (I -Ky)” [M? 4+ MM 6Py_1, (24)

Yielding 6Py — 0 in the linear case (M" = 0),
k—oo

as we found previously.

By contrast, no such guarantee exists when M” #£ 0

= filter divergence.

Also, M" may grow worse with k

=— vicious circle.






EnRML issues

Gauss-Newton version:
(Reynolds et al., 2006; Gu and Oliver, 2007; Chen and Oliver, 2012):

m Requires “model sensitivity” matrix.

m ... which requires pseudo-inverse of the “anomalies”.

— Levenberg-Marquardt version (Chen and Oliver, 2013):
m Modification inside Hessian, simplifying likelihood increment.

m Further complicates prior increment, which is sometimes dropped!

=— New version Raanes, Evensen, Stordal, 2019:
m No explicit computation of the model sensitivity matrix

m Computing its product with the prior covariance is efficient.

m Does not require any pseudo-inversions.



Algorithm simplification

Chen and Oliver (2013):

d®  dops + € * perturb observations, €~ N[0,Cpl;

Ay Cic? (e — ) VNG = T
Uig® Wing® (Ving )" 4= A
A = Ung® (W)™
mo < mpe;  do < g(mo);
So ¢ (do — d°)"Cp!(do — d°)
while ¢ < £, do
Am Cs_cl/2 (me—1 —mg=1) /VNe — 1;
Ad  CpM* (dpor — i) VN — T
UBWE(VPNT « Ad;
X1« (U TCRY? (dp-y - d);
Xo o (I, + (WED?) ™ X
X3« VPWE X3
Smy —C‘glc/zAmX3;
X4« A?;EC;Im(m — Mpe);
X5 AnXy;
X — AmT X5,
Xy VP ( Ly + (W)™ (V) X
dmg 7C51L-/2Aka7;
mg < my—1 + 0my + 0ma;  dp « g(my);

* truncated SVD;

* truncated SVD;

Raanes, Evensen, Stordal (2019):

Require: prior ens. E, obs. perturb’s D
& =EI1/N
X =E—-z1"
W =1y
repeat:
Run model (on each col.) to get M(E)
Y = M(E)(WIL)*
VJiihd — YTCp yl™ + D — M(E)]
VI = (N-1)[Iy — W]

Cw = (Y'CplY+(N-DIy)™"
W =W+ Cw[VJF" + V]
E =z1T + XW



Available from github.com/nansencenter/DAPPER

if MDA: # View update as annealing (progressive assimilation).

Cowl = Cowl @ T # apply previous update

dw = dy @ Y.T @ Cowl

if in upd_a: == "ES-MDA". By Emerick/Reynolds.
D mean®(randn(Y.shape)) * sqrt(nIter)
T (Y +D) @ Y.T @ Cowl

elif in upd_a: #== "ETKF-ish". By Raanes.
T Cowp(@ 5) * sqrt(za) QT

elif in upd_a #== "DEnKF-ish". By Emerick.
T —=0.5%xY@Y. T @ Cowl

# Tinv = eye(N) [as initialized] coz MDA does not de-condition.

else: # View update as Gauss-Newton optimzt. of log-posterior.
grad = Y@edy - wkza # Cost function gradient
dw = grad@Cowl Gauss—Newton step
if in upd_a: =="ETKF-ish". By Bocquet/Sakov
T Cowp(0.5) * sqrt(N1) Sqrt-transforms
Tinv Cowp(-.5) / sqrt(N1) Saves time [vs tinv(T)] when Nx<N
elif in upd_a: # =="EnRML". By Oliver/Chen/Raanes/Evensen/Stordal.
D mean@(randn(Y.shape)) if iteration==0 else D
gradT = -(Y+D)@Y0.T + Nlx(eye(N) - T
T T + gradT@Cowl
# Tinv= tinv(T, threshold=N1) # unstable
Tinv inv(T+1) # the +1 is for stability.
elif in upd_a: == "DEnKF-ish". By Raanes.
# Included for completeness; does not make much sense.
gradT = -0.5%Y@Y@.T + Nlx(eye(N) - T)
T = T + gradT@Cowl
= tinv(T, threshold=N1)

#
#
#
#

Tinv



github.com/nansencenter/DAPPER

Average filter RMS error

Atops =0.2

AtDAW=O.4

Stoch. MDA 10—— 3 O
EnRML 10— 3 &3

Determ. MDA 10 3
IEnKS 10-= 3 [

20 30 40 60 80 100
Ensemble size (N)



Summary

m In the linear case, ICs are forgotten by Riccati.

m — Sampling error attenuates.
m — The covariance normalization factor is inconsequential.

By contrast, nonlinearity
m undoes the attenuation, causing filter divergence.
m creates sampling error by cascading higher-order error down
through the moments.
m Gain form > Precision-matrix form.
m The ensemble linearizations

m are LLS regression estimates.

m converge to the average, analytic sensitivity.
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Appendix



Sampling error from nonlinearity — why?

m Consider the m-th “true” and “sample” moments:

pm = E[z"™],
N

,am =N"! Z x?
n=1

m Define: Error,, = [l — fhm -
m Define: uf, = E[(M(z))™].

m Assume degree-d Taylor exp. of M is accurate. Then

Z Cm il -

m Hence, Due to coupling of rcrlwoments,
T

Errorfn = Z Cyn,iErroriError;
i=1
which defeats moment-matching.

(27)

(28)
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