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Also answered these questions about the EnKF:
Why do we use (N − 1) in 1

N−1
∑
n(xn − x̄)2 ?

About nonlinearity:
Why does it create sampling error?
Why does it cause divergence?



Also answered these questions about the EnKF:
Why do we prefer the Kalman gain ”form”?
About ensemble linearizations:

What are they?
Why is this rarely discussed?
How does it relate to analytic derivatives?



Ensemble linearizations



Traditional EnKF presentation

Recall the KF gain:

K = CxHT
(
HCxHT + R

)−1
. (1)

1st idea: substitute Cx ← C̄x = 1
N−1XXT

=⇒ K̄ = C̄xHT
(
HC̄xHT + R

)−1
(2)

= XYT
(
YY + (N−1)R

)−1
(3)

with Y = HX (4)

= H(X) (5)

= H(E)−mean . (6)

2nd idea: use eqn. (6) also in nonlinear case (when @H).



What is the ensemble’s linearization?

Recall C̄x = 1
N−1XXT and suppose H is nonlinear.

Question: Is there a matrix H̄ such that


1

N−1XYT = C̄xH̄T

1
N−1YYT = H̄C̄xH̄T ?

Answer: Yes (mostly): H̄ = YX+.

Follow up questions:

How come this is rarely discussed?

Why YX+ ?

Does it relate to the analytic derivative (H′) ?



Does H̄ = YX+ relate to H′ ?

Theorem: lim
N→∞

H̄ = E[H′(x)]

= lim
N→∞

YX+ = CyxC−1
x

= lim
N→∞

YXT(XXT)−1 (by Stein/IBP)

= lim
N→∞

C̄yxC̄−1
x

= CyxC−1
x (a.s., by Slutsky, sub. to reg.)

I.e. H̄ may (indeed) be called the “average” derivative.
Assumptions:

Ensemble (behind H̄) and x share the same distribution.

This is Gaussian.



How come H̄ = YX+ is rarely discussed?
Substitute H← H̄ in K̄:

K̄ = C̄xH̄T(H̄C̄xH̄T + R
)−1 (7)

= XYT(YΠXTYT + (N−1)R
)−1

, (8)
where ΠXT = X+X, which is scary... But ΠXT

is just a projection;
vanishes if H is linear, or (N−1) ≤M ;
is present for any/all linearization of H;

Why H̄ = YX+ ?
H̄ is:

Linear least-squares (LLS) estimate of H given Y and X.
BLUE ?
MVUE ?

H̄ is LLS because K̄ is LLS, and the chain rule applies.



Why the “gain form”?



Not equivalent when (N−1) < M :

P̄ = [I− K̄H]B̄ (9)

P̄ =
(
B̄+ + HTR−1H

)−1 (10)

Why is the Kalman gain form (9) better?

Note that eqn. (10) follows from

prior ∝ exp[−1
2(x− x̄)T B̄+(x− x̄)] , (11)

which is “flat” in the directions outside of col(B̄).
=⇒ eqn. (10) yields “opposite” of the correct update.

Note: further complications in case P̄ not defined in eqn. (10).
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Nonlinearity,
sampling error, and divergence.



Aim: study sampling error,
due to nonlinearity,
without worrying about
non-Gaussianity.

MLin(x) =
√

2x ,

MNonLin(x) =
√

2F−1
N
(
Fχ(x2)

)

−1 0 1

−
√
2

0

+
√
2

MLin

MNonLin



Motivational problem

Problem repeats
identically!

Now apply a
(square-root)
EnKF to it.

prior = N (x|0, 2 ) ,
likelihood = N (0|x, 2) ,

=⇒ posterior = N (x| 0 , 1 ) .
dyn. model =MLin(x) =

√
2x .dyn. model = �����MLin(x) = ���

√
2x .dyn. model =MNonLin(x) = . . . .



Sampling error from nonlinearity – why?

Consider the error
in the m-th sample moment
of the forecast (f) ensemble,
propagated by a degree-d model.
It can be shown that

Errorf
m =

md∑
i=1

Cm,iErrorai , (12)

i.e. the moments get coupled, which defeats moment-matching.



Riccati recursion

Assume constant, linear dynamics (M), Q = 0, H = I,
and a deterministic EnKF.

The ensemble covariance obeys:

Forecast: B̄k = M2P̄k−1 . (13)

Analysis: P̄k = (I− K̄k)B̄k (14)

⇐⇒ P̄−1
k = B̄−1

k + R−1 . (15)

=⇒ The “Riccati recursion”:

P̄−1
k = (M2P̄k−1)−1 + R−1 . (16)



Attenuation

Stationary Riccati:
P̄−1
∞ = (M2P̄∞)−1 + R−1 (17)

⇐⇒ P̄∞ = K̄∞R , K̄∞ =
{

I−M−2 if M ≥ 1 ,
0 otherwise. (18)

Initial conditions (ICs) don’t appear
=⇒ ICs are “forgotten”.
=⇒ Sampling error is attenuated.



Why (N − 1) ?
Suppose we re-define the EnKF algorithm to use a different
normalization factor, i.e.

P̃kP̃0 = α

N − 1XkXT
k

α

N − 1X0XT
0 = αP̄kαP̄0 . (19)

But,

the ensemble forecast yields B̃k = M2P̃k−1 , (20)

the analysis using B̃k yields P̃−1
k = B̃−1

k + R−1 . (21)

=⇒ The Riccati recursion: P̃−1
k = (M2P̃k−1)−1 + R−1 (22)

Note: α does not appear.
=⇒ its impact is attenuated, just like ICs.
=⇒ P̃k −−−→

k→∞
P̄k.

=⇒ x̃k −−−→
k→∞

x̄k.



Filter divergence
Recall Riccati:

P̄k = ( I− K̄k )︸ ︷︷ ︸
−−−→

k→∞
M−2

M2P̄k−1 . (23)

Now consider δP̄k. Its recursion is:

δP̄k ≈ ( I− K̄k )2 [M2 +MM′′] δP̄k−1 , (24)

Yielding δP̄k −−−→
k→∞

0 in the linear case (M′′ = 0),
as we found previously.

By contrast, no such guarantee exists when M′′ 6= 0
=⇒ filter divergence.

Also, M′′ may grow worse with k
=⇒ vicious circle.



Revising

EnRML



EnRML issues
Gauss-Newton version:
(Reynolds et al., 2006; Gu and Oliver, 2007; Chen and Oliver, 2012):

Requires “model sensitivity” matrix.

. . . which requires pseudo-inverse of the “anomalies”.

=⇒ Levenberg-Marquardt version (Chen and Oliver, 2013):

Modification inside Hessian, simplifying likelihood increment.

Further complicates prior increment, which is sometimes dropped!

=⇒ New version Raanes, Evensen, Stordal, 2019:
No explicit computation of the model sensitivity matrix

Computing its product with the prior covariance is efficient.

Does not require any pseudo-inversions.



Algorithm simplification

Chen and Oliver (2013): Raanes, Evensen, Stordal (2019):



Available from github.com/nansencenter/DAPPER

github.com/nansencenter/DAPPER
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Summary

In the linear case, ICs are forgotten by Riccati.
=⇒ Sampling error attenuates.
=⇒ The covariance normalization factor is inconsequential.

By contrast, nonlinearity
undoes the attenuation, causing filter divergence.
creates sampling error by cascading higher-order error down
through the moments.

Gain form > Precision-matrix form.
The ensemble linearizations

are LLS regression estimates.
converge to the average, analytic sensitivity.



References

Yan Chen and Dean S. Oliver. Ensemble randomized maximum likelihood method as
an iterative ensemble smoother. Mathematical Geosciences, 44(1):1–26, 2012.

Yan Chen and Dean S. Oliver. Levenberg–Marquardt forms of the iterative ensemble
smoother for efficient history matching and uncertainty quantification.
Computational Geosciences, 17(4):689–703, 2013.

Yaqing Gu and Dean S. Oliver. An iterative ensemble Kalman filter for multiphase
fluid flow data assimilation. SPE Journal, 12(04):438–446, 2007.

Patrick N. Raanes, Marc Bocquet, and Alberto Carrassi. Adaptive covariance inflation
in the ensemble Kalman filter by Gaussian scale mixtures. Quarterly Journal of the
Royal Meteorological Society, 145(718):53–75, 2019a. doi: 10.1002/qj.3386.

Patrick N. Raanes, Geir Evensen, and Andreas S. Stordal. Revising the stochastic
iterative ensemble smoother. Nonlinear Processes in Geophysics, 0(0):0–0, 2019b.
doi: 10.5194/npg-2019-10. arXiv preprint arXiv:1901.06570.

A. C. Reynolds, M. Zafari, and G. Li. Iterative forms of the ensemble Kalman filter. In
10th European Conference on the Mathematics of Oil Recovery, 2006.



Appendix



Sampling error from nonlinearity – why?

Consider the m-th “true” and “sample” moments:
µm = E[xm] , (25)

µ̂m = N−1
N∑
n=1

xmn . (26)

Define: Errorm = µ̂m − µm .

Define: µf
m = E

[(
M(x)

)
m
]
.

Assume degree-d Taylor-exp. of M is accurate. Then

µf
m =

md∑
i=1

Cm,iµi . (27)

Hence, Due to coupling of moments,

Errorf
m =

md∑
i=1

Cm,iErrorai Errori , (28)

which defeats moment-matching.
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