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Convective scale data assimilation

I Data assimilation on convective scales needs to capture fast
changing processes and many scales of motion that are resolved in
high resolution models.

I Variables estimated need to be positive or in certain range.
I Rapid updates are essential (for example radar reflectivity, radial

wind data assimilation 5-15 min). However, leading to problems of
balance and noise.

I Background errors are non-Gaussian in nature (for example location
error), model error consisting of large as well as unresolved scales
and processes.

I Predictability of convective storms is couple of hours (Durran and
Weyn 2016, Durran and Gingrich, 2014).



Problems with noise
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Surface pressure tendency (upper). Absolute vertical velocity (bottom).

Lange, H., G. C. Craig, T. Janjić, 2017: Characterizing Noise and Spurious Convection
in Convective Data Assimilation, Q. J. R. Meteorol. Soc.



Convective scale DA at DWD

I COSMO model (Baldauf et al. 2011) in the domain over Germany,
2.8km horizontal resolution, 50 hybrid levels. Deep convection
explicit, shallow convection parametrized.

I Kilometer-Scale Ensemble Data Assimilation (KENDA, Schraff et al.
2016) based on LETKF (Hunt et al. 2007)

I State consists of the prognostic variables of velocity, temperature,
pressure perturbation, specific humidity, cloud water and ice.

I The prognostic variables of turbulent kinetic energy, rain, snow, and
graupel are excluded from the analysis update.

I 1h updates

I For radar data, LHN in all ensemble members
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Convective scale DA at DWD

1 40-member ensemble
2 adaptive localization in

horisontal, in vertical 0.075–0.5
in ln p

3 adaptive inflation
4 RTPP scheme with 0.75 (Zhang

et al 2004)
5 Additive noise with samples

from ICON’s B matrix.

Figure from
Lange and Janjic (2016), MWR



Downscaling versus convective-scale DA
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The fraction skill score corresponding to areas of 30 km × 30 km for
1.0 mm h−1 one hour precipitation as a function of forecast lead time for
a convective two-week period from 26 May to 9 June 2016 .

Gustafsson et al. 2018, Survey of data assimilation methods for
convective-scale numerical weather prediction at operational centres, QJRMS



Model error

1. Additive noise Insufficient model
resolution is one source of model
error. Samples based on differences
between 1.4km and 2.8km
COSMO-DE runs. Weakly forced
case, June 2016.

Zeng et al. 2018, JAMES;
Zeng et al. 2019, JAMES

2. Boundary layer uncertainty:
1 Stochastic boundary layer scheme

(Kober and Craig 2017)
2 warm-bubble
3 Parameter perturbations or

estimation e.g. roughness length.
Verification against VIS/NIR
data.
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— Physical properties/Conservation laws —



Outline

I Numerical discretization schemes have a long history of incorporating
the most important conservation properties of the continuous system
in order to improve the prediction of the nonlinear flow.

I The question arises, whether data assimilation algorithms should
follow a similar approach?

1 Explore which conservation properties are well recovered when using
an ensemble Kalman filter

2 Include as constraints those that are not in data assimilation
3 Show implication on the prediction
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Physical properties lost in the analysis step
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The mean (red line) with background ensemble (left) and analysis ensemble
obtained with EnKF algorithm (right). Observations (green) are the true state
plus log normal noise.



Ensemble Kalman filter conserves
total mass

I If no posterior adjustment are made (for example setting negative
values to 0) and if

I no adjustments are made to sample covariance, EnKF conserves
mass.
If eTwb,i

k = M then the ensemble mean has also mass M, hence

eT (wb,i
k −wb

k) = 0 for all i and eTPb
k = 0, that is eTKk = 0

eTwa
k = eTwb

k and

Pa
k = (I−KkHk)Pb

k(I−KkHk)
T + KkRkKT

k

eTPa
k = 0

eTwa,i
k = eTwa

k .
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Physical properties lost in analysis step

The analysis mean (red line) and analysis ensemble obtained with log
transformed EnKF algorithm. Analysis ensemble and the analysis are positive.
Mass 1.42 < 2 is not conserved.



Preserving physical properties

I Study conservation of mass, energy and enstrophy
I including dependence of the results on the observational type and

localization radius

I Non-linear dynamics with 2D nonlinear shallow water model

∂u

∂t
= −u ∂u

∂x
− v

∂u

∂y
+ fv − g

∂h

∂x

∂v

∂t
= −u ∂v

∂x
− v

∂v

∂y
− fu − g

∂h

∂y

∂h

∂t
= − ∂

∂x
(hu)− ∂

∂y
(hv)

h is the free surface height,
u is the zonal wind, v is the meridional wind,
g is the gravity acceleration and f is the Coriolis parameter.



Preserving physical properties

I Numerical discretization of the dynamics is such that mass, energy
and momentum are conserved and enstrophy for non divergent flow.

We will consider changes due to data assimilation in

I Mass M =
∫ ∫

h(x , y)dxdy ,

I Total energy

E =
1
2
∫ ∫

h(x , y)
[
u(x , y)2 + v(x , y)2

]
+ g [h(x , y)− h0]

2 dxdy

I Enstrophy

E =
∫ ∫

h(x , y)
[
∂v
∂x (x , y)−

∂u
∂y (x , y)

]2
dxdy .



Nonlinear shallow water model

Time evolution of mass, total energy and enstrophy, normalized with
respective initial values, in a nature run.



LETKF experiments

I different localization and the observational coverage
I 32 members + 1 deterministic run, constant inflation = 1.05
I 50 assimilation cycles
I Observations, u, v and h, or u and v, or h only from nature run
I Linear observation operator
I Gaussian observation error with standard deviations of 1.5m/s and

50 m.
I 1h updates



Diagnostics for analysis (ensemble mean)

1 RMSE
2 Normalized divergence
3 Noise (e.g. Janjic et al. 2011)

N =

∑Nx ,Ny

i,j=1 [∇2u(i , j)]2 + [∇2v(i , j)]2∑Nx ,Ny

i,j=1 [u(i , j)2 + v(i , j)2]

Relative to:
I nature run
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Energy and Enstrophy

Es

En

Obs u,v and h Obs u and v Obs h



Kinetic energy spectra

Averaged over the first (upper) and last five assimilation cycles (lower).



Prediction

RMSE for u RMSE for h

Y. Zeng and T. Janjic, 2016: Study of Conservation Laws with the Local Ensemble
Transform Kalman Filter, Q. J. R. Meteorol. Soc.,142:699, 2359–2372.
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— EnKF with constraints —

Janjic, T., D. McLaughlin, S. E. Cohn, M. Verlaan, 2014: Conservation of mass and
preservation of positivity with ensemble-type Kalman filter algorithms, Mon. Wea.
Rev., 142, No. 2, 755-773.

Zeng, Y., T. Janjić, Y. Ruckstuhl and M. Verlaan, 2017: Ensemble-type Kalman filter
algorithm conserving mass, total energy and enstrophy, Q. J. R. Meteorol. Soc.,
143:708, 2902–2914, doi:10.1002/qj.3142.



QPEns

Propagation step. Propagate the mean and the covariance with the
dynamics between observations. Prior to new observation we have wb

k

and its covariance Pb
k .

wb,i
k =Mwa,i

k−1 + qi
k i = 1, . . .N

Pb
k =

1
N − 1

N∑
i=1

[wb,i
k −wb

k ][w
b,i
k −wb

k ]
T .

Kalman analysis.

wa,i
k = wb,i

k + Kk(wo
k + r i −Hkwb,i

k ),

Kk = Pb
kH

T
k (HkPb

kH
T
k + Rk)

−1

Pa
k = (I−KkHk)

TPb
k

Derived using qi ∼ N (0,Q), r i ∼ N (0,R), wb
0 ∼ N (0,Pb

0) and all
uncorrelated.



QPEns algorithm

Inverse of ensemble derived background error covariance can be used to
minimize the cost function to obtain the analysis

wa,i
k = wb,i

k + arg min
δw i

1
2
[δwi T (Pb

k)
−1δwi + f i

T
R−1

k f i ]

subject to

δwi ≥ −wb,i
k .

where

δwi = wa,i
k −wb,i

k , f i = wo,i
k −Hkwb,i

k −Hkδwi − rok .

Janjic, T., D. McLaughlin, S. E. Cohn, M. Verlaan, 2014: Conservation of mass and

preservation of positivity with ensemble-type Kalman filter algorithms, Mon. Wea.
Rev., 142, No. 2, 755-773.



SQPEns algorithm

Inverse of ensemble derived analysis error covariance can be used to
minimize the cost function to obtain the analysis

wa,i
k = wb,i

k + arg min
δw i

1
2
[δwi T (Pb

k)
−1δwi + f i

T
R−1

k f i ]

subject to

cj(δwi ) ≤ 0, j ∈ {1, 2, ...,m1}
gk(δwi ) = 0, k ∈ {1, 2, ...,m2}

where

δwi = wa,i
k −wb,i

k , f i = wo,i
k −Hkwb,i

k −Hkδwi − rok .

Zeng, Y., T. Janjić, Y. Ruckstuhl and M. Verlaan, 2017: Ensemble-type Kalman filter

algorithm conserving mass, total energy and enstrophy, Q. J. R. Meteorol. Soc.,
143:708, 2902–2914, doi:10.1002/qj.3142.



QPEns algorithm in ensemble space

ρ = Rank(Pb), which is no larger than N − 1

δwi = Lηi

Pb = LLT

QPEns Algorithm in ensemble space

ηi = arg min
ηi

1
2
[ηi

T
ηi + f i

T
R−1f i ]

subject to the following non-negativity constraint:

−Lηi ≤ wb,i
k .

The algorithm reduces to EnKF if there are no constraints present.
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Preserving physical properties
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QPEns analysis in ensemble space with positivity constraint. Both mass
conservation and positivity constraint improve analysis.



Modified shallow water model

∂u

∂t
+ u

∂u

∂x
+
∂(φ+ γ2r)

∂x
= βu + Du

∂2u

∂x2 , φ =

{
φc if h > hc
gh otherwise,

∂r

∂t
+ u

∂r

∂x
= Dr

∂2r

∂x2 − αr −
{
δ ∂u∂x , if h > hrand

∂u
∂x < 0

0 otherwise,

∂h

∂t
+
∂(uh)

∂x
= Dh

∂2h

∂x2 .

Wuersch and Craig 2014: A simple dynamical model of cumulus convection for data
assimilation research., Meteorol. Z., 23, 483-490.



EnKF vs. QPEns

EnKF vs. QPEns analysis with positivity and mass constraint (Ruckstuhl and
Janjic 2018) for modified shallow water model (Wuersch and Craig 2014).



Ruckstuhl and Janjic 2018: Parameter and state estimation with ensemble Kalman
filter based algorithms for convective scale applications.
Q.J.R. Meteorol. Soc.. 144:712, 826–841, doi:10.1002/qj.3257.



Prediction 2D SW

RMSE for h RMSE for u

Zeng, Y., T. Janjić, Y. Ruckstuhl and M. Verlaan, 2017: Ensemble-type Kalman filter
algorithm conserving mass, total energy and enstrophy, Q. J. R. Meteorol. Soc.,
143:708, 2902–2914, doi:10.1002/qj.3142.



Diagnostics

Divergence Noise

Variations of model diagnostics of divergence and noise within the data
assimilation in experiments

E_BSP_NO E_BSP_En E_BSP_Es and E_BSP_EnEs.



Small scale spectra

Energy spectra Enstrophy spectra

E_BSP_NO E_BSP_En E_BSP_Es E_BSP_EnEs.



Conclusion

I QPEns a method for addressing positivity
I Method is by construction multivariate
I Allows inclusion of other linear and nonlinear constraints
I Improves accuracy and bias in simple problems
I Adjoint not needed

I Although total energy of the analysis ensemble mean converges
towards the nature run value with time, enstrophy does not.

I Imposing the conservation of enstrophy within the data assimilation
effectively avoids the spurious energy cascade of rotational part and
this way succesfully suppresses the noise.

I Conserving mass and positivity reduces the noise in convective scale
data assimilation applications.
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Outlook

I Tests of imposing physical constraints on a hierarchy of 2D models
for robustness across scales and in presence of sources and sinks,
boundary conditions, etc.

I

Application to high dimensional
systems (either through optimiza-
tion research as in T. Janjic, Y.
Ruckstuhl and P. L. Toint, 2019
or through machine learning)

Coarse 

Fine Nature 

I Continued research in model and representation error for both data
assimilation (e.g. exploring stochastic approaches to representation
error) and ensemble forecasting.

I Predictability studies
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