Inspire Create Transform

Ensemble-based Data Assimilation For High-uncertainty systems: Case of study, PM10 and PM2.5 in the Aburrá Valley

Santiago Lopez-Restrepo, <u>Andrés Yarce Botero</u>, Olga Lucía Quintero Montoya, Nicolas Pinel Pelaez, Arjo Serger, Arnold W Heemink.

Inspire Create Transform

Introduction

Aburrá Valley Landscape in a Contingency Day. www.elcolombiano.com

Inspire Create Transform

Vigilada Mineducación

MAUI: Medellín Air qUality Initiative

Inspire Create Transform

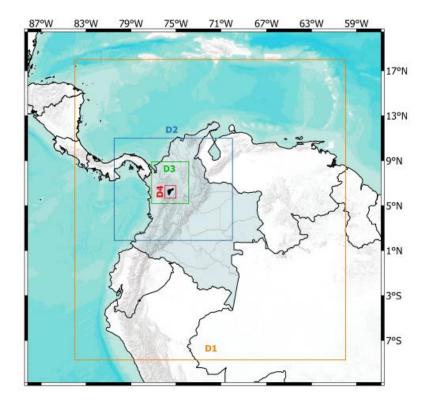
Vigilada Mineducación

Introduction

Why is this application interesting?

- A high resolution model implementations is required.
- There are different sources of high uncertainty:
 - Emissions inventory
 - Meteorology
- A low-cost sensor network is available with a high spatial representation (221 measurement points).

Inspire Create Transform



Domain	Longitude	Latitude	Cell size
D1	$84^{\circ}W$ - $60^{\circ}W$	$8.5^{\circ}\text{S}-18^{\circ}\text{N}$	0.27°
D2	$80.5^{\circ}W$ - $70^{\circ}W$	2°N-11°N	0.09°
D3	$77.2^{\circ}W-73.9^{\circ}W$	5.2° N- 8.9° N	0.03°
D4	$76^{\circ}W-75^{\circ}W$	$85.7^{\circ}N-6.8^{\circ}N$	0.01°

Table 1: Nested domain specifications

Period	From 31-March-2016 to 25-April-2016	
Time resolution	1 hour	
Domain	[-76 to -75] west x $[5.7 to 6.8]$ north	
Spatial resolution	0.01° \times 0.01° \sim 1km \times 1km	
Metereology	ECMWF. Temp.Res:3 h. Spat.Res: $0.07^\circ \times 0.07^\circ$	
Initial and boundary	LOTOS-EUROS (D3). Temp.Res: 1h.	
conditions	Spat.Res: $0.03^{\circ} \times 0.03^{\circ}$	
Nominal Emissions	EDGAR V4.2	

Table 2: Experimental setup

Inspire Create Transform

We used a LEKF and a stochastic model for parameter estimation

$$x_t = M(x_{t-1})$$

$$\delta e_t = \alpha \delta e_{t-1} + \sqrt{1 - \alpha^2} w_t$$

where w_t is a white noise and δe_t is the emission correction factor

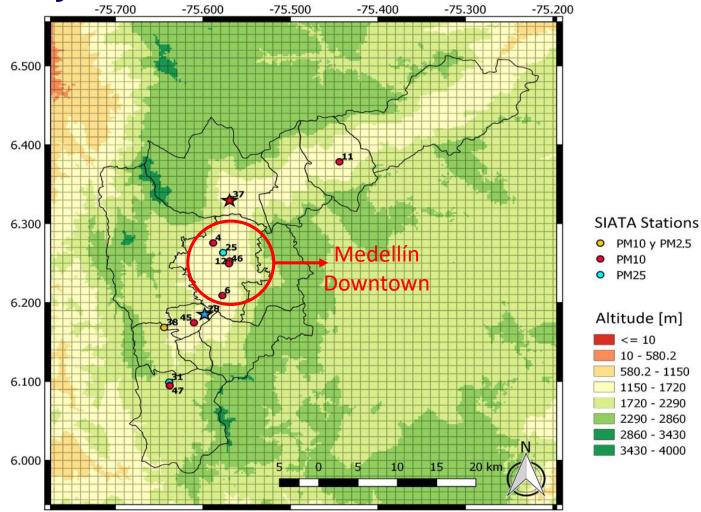
$$\begin{bmatrix} x_t \\ \delta e_t \end{bmatrix} = \begin{bmatrix} M(x_{t-1}) \\ \alpha \delta e_{t-1} \end{bmatrix} + \begin{bmatrix} 0 \\ \sqrt{1 - \alpha^2} \end{bmatrix} w_t$$

The coefficient α represents the time correlation parameter. Using the parameterization $\alpha = exp(-1/\tau)$ for a given time correlation length τ .

We are considering Uncertainties in:

- PM10+BC Emissions
- NH3 Emissions
- SOx Emissions

Inspire Create Transform



Inspire Create Transform

We implemented the method proposed in (Desroziers, Berre, Chapnik, & Poli, 2005) to estimate R.

 $E[d_a^o(d_b^o)^T] = \mathbf{R}$

 $HK = HBH^T (HBH^T + R)^{-1}$

If matrix $HK = HBH^T (HBH^T + R)^{-1}$ are the true covariances for background and observation error. d_a^o is the difference between observations and analysis state in observation space, and d_h^o is the difference between observations and forecast state in observation space. One application of this relationship is to estimate observation error covariance matrix (Li, Kalnay, & Miyoshi, 2009).

Inspire Create Transform Vigilada Mineduca

First period (2 weeks)

- Calibration of the localization radius.
- Calibration of the correlation time *t*.
- Estimation of matrix *R*.
- First emissions estimation

Calibrated DA method Estimated **R** Estimated emissions as nominal emissions.

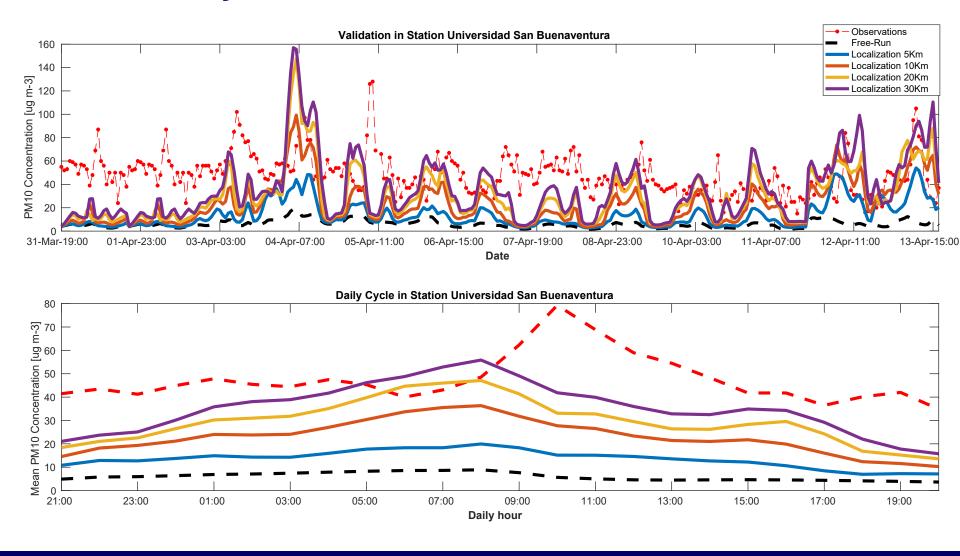
Second period (2 weeks)

- Second emissions estimation.
- Forecast.

Inspire Create Transform

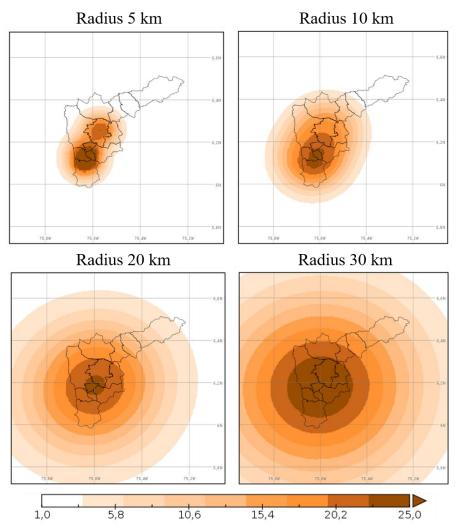
First period

PM10



Inspire Create Transform

First period



Inspire Create Transform

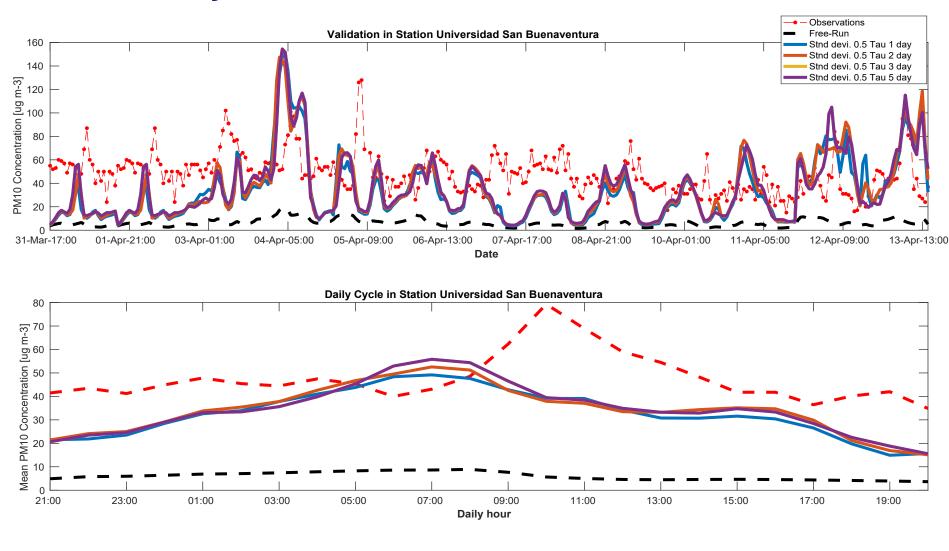
Vigilada Mineducación

First period

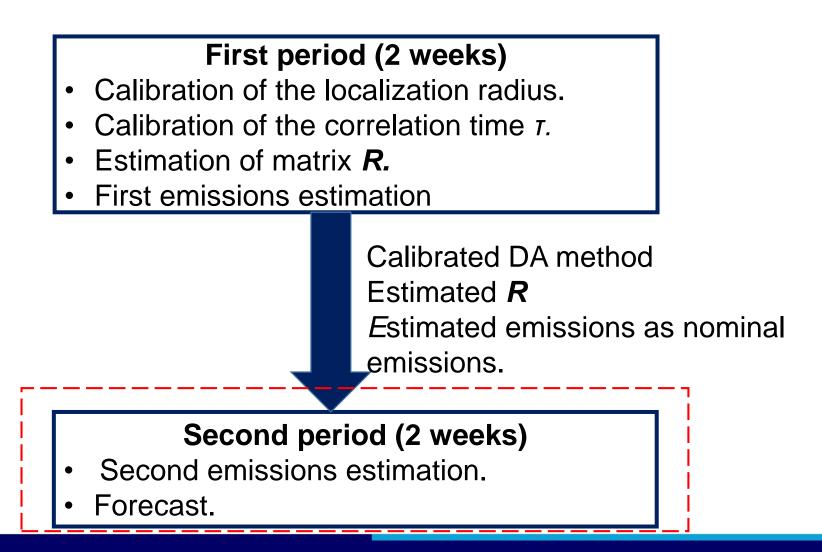
PM2.5

Delft University of Technology

e



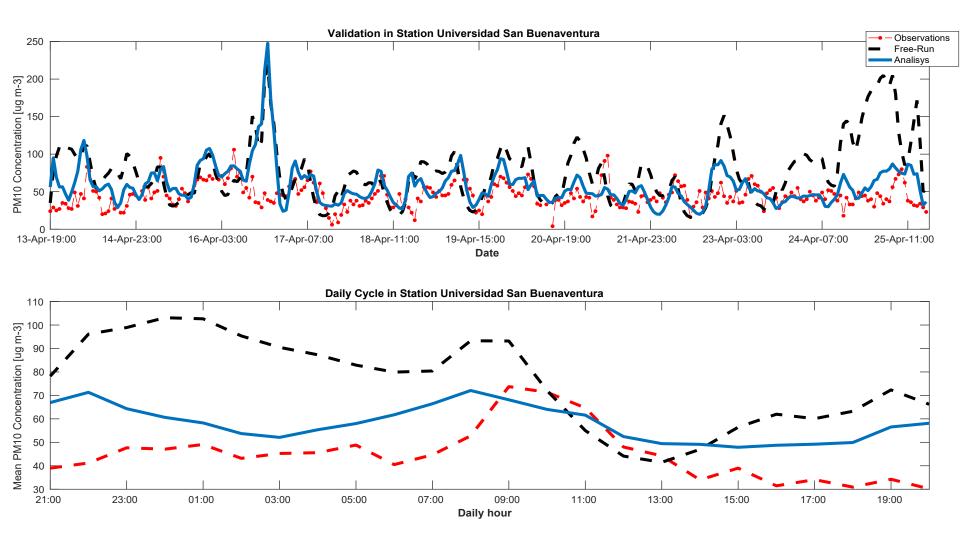
Inspire Create Transform



Inspire Create Transform

Second period

PM10

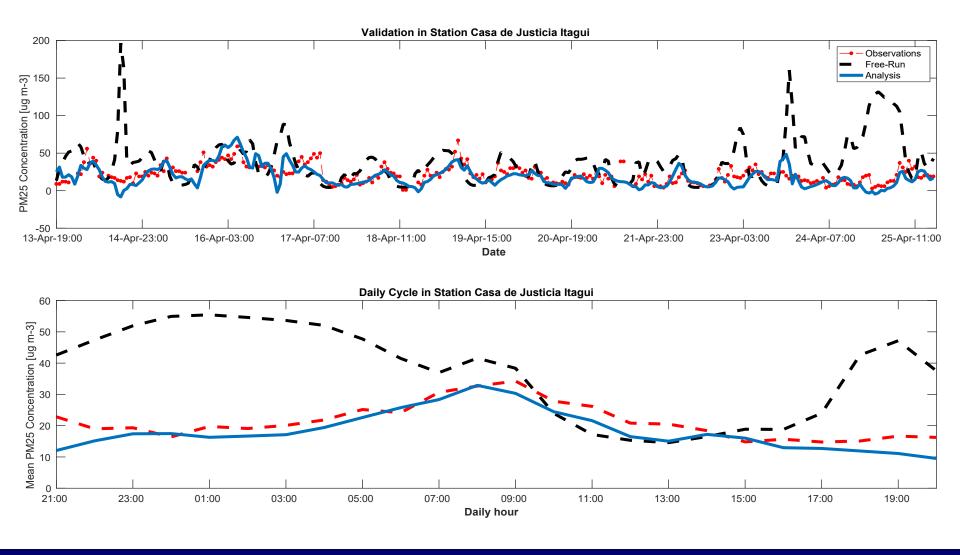


Inspire Create Transform

Vigilada Mineducación

Second period

PM2.5

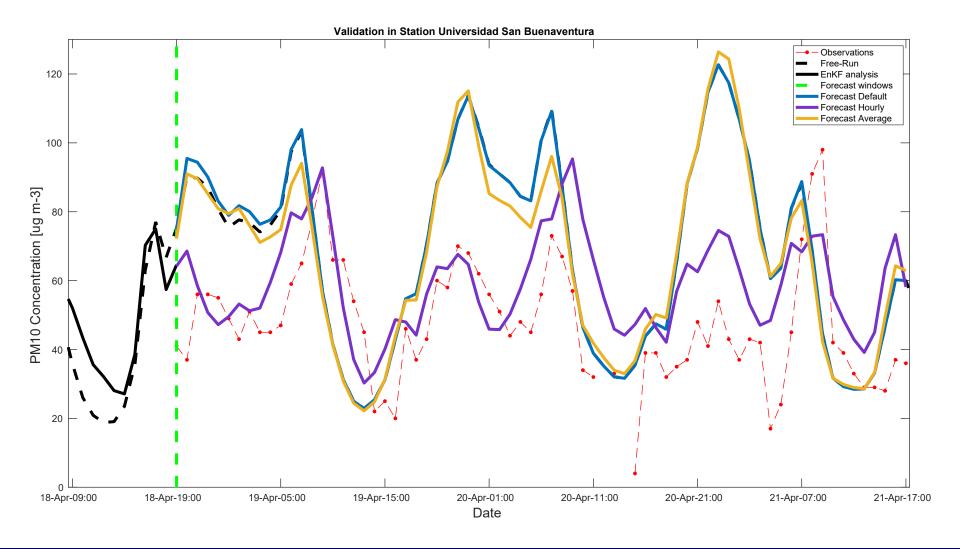


Inspire Create Transform

Vigilada Mineducación

Second period

PM10

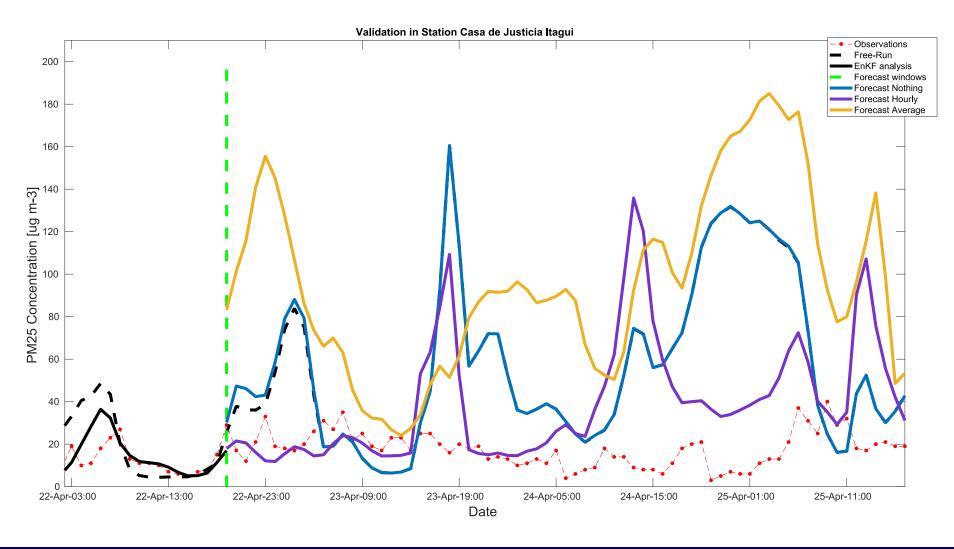


Inspire Create Transform

Vigilada Mineducación

Second period

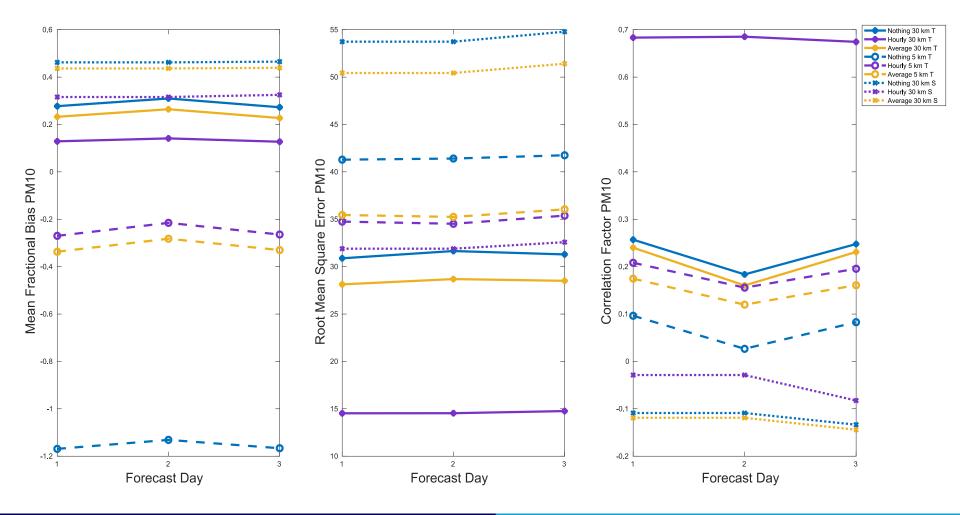
PM2.5



Inspire Create Transform

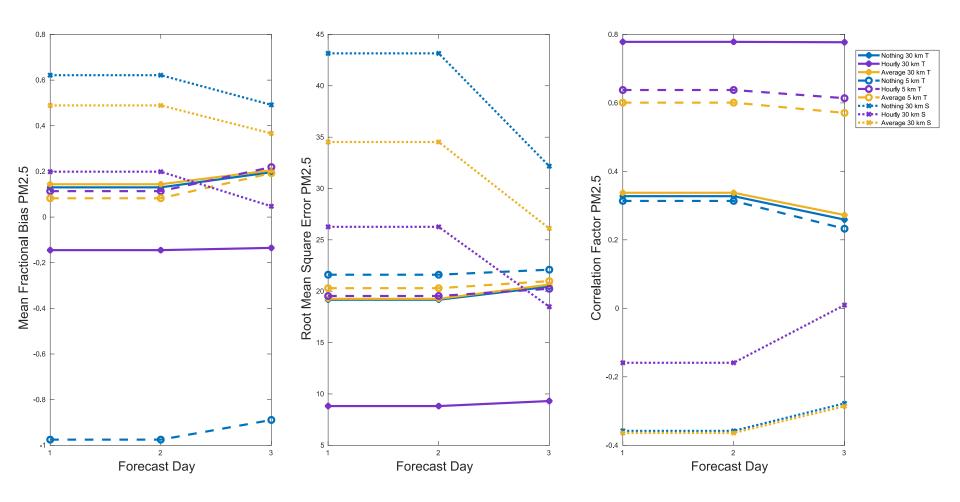
Vigilada Mineducación

PM10



Inspire Create Transform

PM2.5

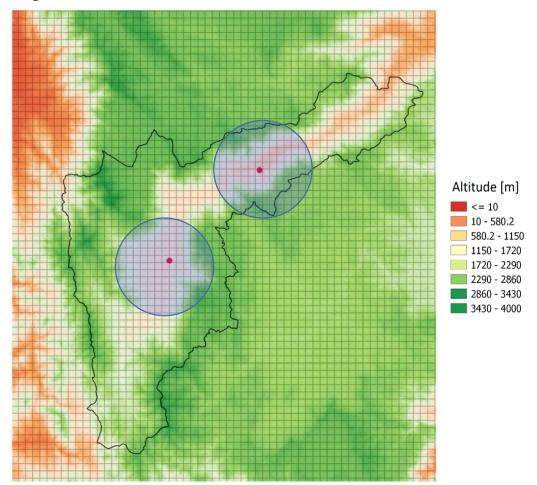


Inspire Create Transform

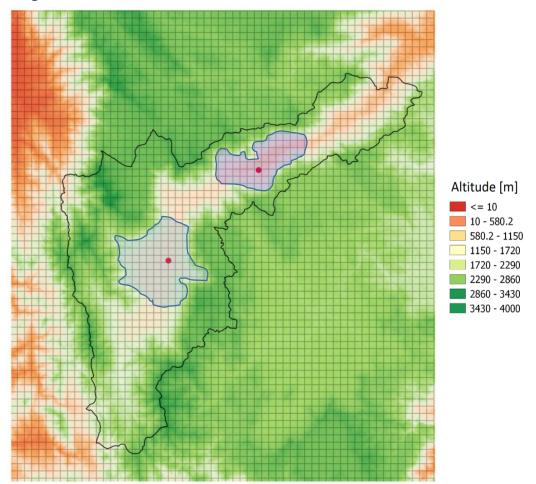
Vigilada Mineducación

The idea of the concept would be, how is it possible to incorporate previous information of the system in the covariance estimation?

Inspire Create Transform



Inspire Create Transform



Inspire Create Transform

According with the works (Nino-Ruiz & Sandu, 2015; Nino-Ruiz & Sandu, 2017), using a Shrinkage estimator:

$$\begin{split} \hat{B} &= \lambda \cdot \mu \cdot T + (1 - \lambda) \cdot P^{b} \in R^{N \times N} \\ \mu &= \frac{\sum_{i=1}^{N-1} \sigma_{i}^{2}}{n} \\ \lambda &= \min\left(\frac{\frac{N-2}{n} \cdot \sum_{i=1}^{N-1} \sigma_{i}^{4} + \left[\sum_{i=1}^{N-1} \sigma_{i}^{2}\right]^{2}}{\left(N+2\right) \cdot \left[\sum_{i=1}^{N-1} \sigma_{i}^{4} - \frac{\left[\sum_{i=1}^{N-1} \sigma_{i}^{2}\right]^{2}}{n}\right]}, 1 \right) \end{split}$$

Inspire Create Transform

Localization.

Local analyses methods can be used in the context of the Shrinkage estimator.

Covariance Inflation

It can be seen that inflating each deviation by a factor of ρ has the following effect on

$$\hat{B} = \lambda \cdot \mu \cdot T + [(1 - \lambda) \cdot \rho^2] \cdot P^b \in \mathbb{R}^{N \times N}$$

Inspire Create Transform

Thank you very much for your attention

Tusen takk for din oppmerksomhet

Heel erg bedankt voor je aandacht

Muchas gracias p^{26} su atención

References

- Desroziers, G., Berre, L., Chapnik, B., & Poli, P. (2005). Diagnosis of observation, background and analysis-error statistics in observation space. *Quarterly Journal of the Royal Meteorological Society*, 131(613), 3385–3396. <u>https://doi.org/10.1256/qj.05.108</u>
- Han, Y., Zhang, Y., Wang, Y., Ye, S., & Fang, H. (2009). A new sequential data assimilation method. Science in China, Series E: Technological Sciences, 52(4), 1027–1038. https://doi.org/10.1007/s11431-008-0189-3
- Heemink, A. W., & Segers, A. J. (2002). Modeling and prediction of environmental data in space and time using Kalman filtering. *Stochastic Environmental Research and Risk Assessment*, 16(3), 225–240. https://doi.org/10.1007/S00477-002-0097-1
- Luo, X., & Hoteit, I. (2011). Robust Ensemble Filtering and Its Relation to Covariance Inflation in the Ensemble Kalman Filter, 3938–3953. https://doi.org/10.1175/MWR-D-10-05068.1

Inspire Create Transform

References

- Li, H., Kalnay, E., & Miyoshi, T. (2009). Simultaneous estimation of covariance inflation and observation errors within an ensemble Kalman filte. *Quarterly Journal Of The Royal Meteorological Society*, 135(4), 4523–4533.
- Nan, T. chao, & Wu, J. chun. (2017). Application of ensemble Hinfinity filter in aquifer characterization and comparison to ensemble Kalman filter. Water Science and Engineering, 10(1), 25–35. https://doi.org/10.1016/j.wse.2017.03.009
- Nino-ruiz, E. D., & Sandu, A. (2015). Ensemble Kalman filter implementations based on shrinkage covariance matrix estimation, 1423–1439. https://doi.org/10.1007/s10236-015-0888-9
- Nino-Ruiz, E. D., & Sandu, A. (2017). Efficient parallel implementation of DDDAS inference using an ensemble Kalman filter with shrinkage covariance matrix estimation. *Cluster Computing*, 1–11. https://doi.org/10.1007/s10586-017-1407-1

Inspire Create Transform

References

Peng, Z., Liu, Z., Chen, D., & Ban, J. (2017). Improving PM2.5 forecast over China by the joint adjustment of initial conditions and source emissions with an ensemble Kalman filter. *Atmospheric Chemistry and Physics*, *17*(7), 4837–4855. https://doi.org/10.5194/acp-17-4837-2017

Inspire Create Transform

