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Introduction

Aburrá Valley Landscape in a Contingency Day. 
www.elcolombiano.com
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MAUI:  Medellín Air qUality Initiative
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Introduction

Why is this application interesting?

• A high resolution model implementations is required.

• There are different sources of high uncertainty:

• Emissions inventory

• Meteorology

• A low-cost sensor network is available with a high spatial

representation (221 measurement points).
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Preliminary Results

δ𝑒𝑡 = αδ𝑒𝑡−1 + 1 − α2 𝑤𝑡

𝑥𝑡 = 𝑀 𝑥𝑡−1

𝑥𝑡
δ𝑒𝑡

=
𝑀 𝑥𝑡−1
αδ𝑒𝑡−1

+
0

1 − α2
𝑤𝑡

We used a LEKF and a stochastic model for parameter estimation

The coefficient α represents the time correlation parameter. Using

the parameterization 𝛼 =exp(-1/τ) for a given time correlation

length τ.

We are considering Uncertainties in:

• PM10+BC Emissions

• NH3 Emissions

• SOx Emissions
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where 𝑤𝑡 is a white noise and δ𝑒𝑡 is the emission correction factor



Preliminary Results

Medellín
Downtown
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Preliminary Results

We implemented the method proposed in (Desroziers, Berre,

Chapnik, & Poli, 2005) to estimate R.

𝐸 𝑑𝑎
𝑜 𝑑𝑏

𝑜 𝑇 = 𝑹

If matrix 𝑯𝑲 = 𝑯𝑩𝑯𝑻 𝑯𝑩𝑯𝑻 + 𝑹
−𝟏

are the true covariances for

background and observation error. 𝑑𝑎
𝑜 is the difference between

observations and analysis state in observation space, and 𝑑𝑏
𝑜 is the

difference between observations and forecast state in observation

space. One application of this relationship is to estimate observation

error covariance matrix (Li, Kalnay, & Miyoshi, 2009).

𝑯𝑲 = 𝑯𝑩𝑯𝑻 𝑯𝑩𝑯𝑻 + 𝑹
−𝟏
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Preliminary Results

First period (2 weeks)

• Calibration of the localization radius.

• Calibration of the correlation time τ.

• Estimation of matrix R.

• First emissions estimation

Second period (2 weeks)

• Second emissions estimation.

• Forecast.

Calibrated DA method

Estimated R

Estimated emissions as nominal 

emissions.
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Preliminary Results

First period (2 weeks)

• Calibration of the localization radius.

• Calibration of the correlation time τ.

• Estimation of matrix R.

• First emissions estimation

Second period (2 weeks)

• Second emissions estimation.

• Forecast.

Calibrated DA method

Estimated R

Estimated emissions as nominal 

emissions.
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Second period PM10
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Preliminary Results

                                                                                                            

    

 

  

  

  

  

   

   

 
 
 
 
  
 
 
 
 
 
  
 
  
 
 
  
 
 
  

  
 

                                                  

            

        

             

                

                

               

                

Second period

17

PM10



Preliminary Results Second period

18

PM2.5



Preliminary Results

19

PM10



Preliminary Results

20

PM2.5



Covariance Estimation Using Knowledge

About the System

The idea of the concept would be, how is it possible to

incorporate previous information of the system in the covariance

estimation?
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Covariance Estimation Using Knowledge

About the System
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Covariance Estimation Using Knowledge

About the System

෠𝐵 = 𝜆 ⋅ 𝜇 ⋅ 𝑇 + 1 − 𝜆 ⋅ 𝑃𝑏 ∈ 𝑅𝑁×𝑁

According with the works (Nino-Ruiz & Sandu, 2015; Nino-Ruiz & 

Sandu, 2017 ), using a Shrinkage estimator:

𝜇 =
σ𝑖=1
𝑁−1𝜎𝑖

2

𝑛

𝜆 = 𝑚𝑖𝑛

𝑁 − 2
𝑛

⋅ σ𝑖=1
𝑁−1𝜎𝑖

4 + σ𝑖=1
𝑁−1𝜎𝑖

2 2

𝑁 + 2 ⋅ σ𝑖=1
𝑁−1𝜎𝑖

4 −
σ𝑖=1
𝑁−1𝜎𝑖

2 2

𝑛

, 1
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Covariance Estimation Using Knowledge

About the System

Localization.

Local analyses methods can be used in the context of the 

Shrinkage estimator. 

Covariance Inflation

It can be seen that inflating each deviation by a factor of ρ has the 

following effect on

෠𝐵 = 𝜆 ⋅ 𝜇 ⋅ 𝑇 + 1 − 𝜆 ⋅ 𝜌2 ⋅ 𝑃𝑏 ∈ 𝑅𝑁×𝑁
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Thank you very much for your attention

Tusen takk for din oppmerksomhet

Heel erg bedankt voor je aandacht

Muchas gracias por su atención
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