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Motivation for CDA

• Coupled data assimilation (CDA) is characterized by the use 
of a coupled forecast model, but more generally focuses on 
the assimilation of information from multiple spatiotemporal 
scales, often derived from different components of the Earth 
system. 

• Weakly coupled DA (WCDA) allows information to be 
transferred between scales via the forward model 
integration 

• Strongly coupled DA (SCDA) attempt to transfer information 
instantaneously at the analysis time, and also in the model



Aside - definitions

• Weakly coupled data 
assimilation (WCDA) 
means -  

• Strongly coupled data 
assimilation (SCDA) 
means -  

• At this point, when I 
discuss ‘Coupled Data 
Assimilation’ (CDA), I 
implicitly refer to SCDA.
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A review of SCDA applied to Simple models

• Han et al. (2013): 

• “Results show that it requires a large ensemble size 
to improve the assimilation quality by applying 
coupling error covariance in an ensemble coupled data 
assimilation system… It is also found that a fast-
varying medium has more difficulty being improved 
using observations in slow-varying media by 
applying coupling error covariance because the 
linear regression from the observational increment in 
slow-varying media has difficulty representing the high-
frequency information of the fast-varying medium.”

Lorenz atmosphere and a pycnocline ocean model  



A review of SCDA applied to Simple models

• Liu et al. (2013): 

• SCDA that assimilates observations in both the atmosphere 
and ocean and that employs the coupled covariance matrix 
outperforms the WCDA alternative.  

• Assimilation of synoptic atmospheric variability was critical for the 
improvement of both the atmospheric state and the oceanic state 
through coupled covariance, especially in the midlatitude system 

• The assimilation of synoptic atmospheric observation alone 
improved the coupled state almost as much as assimilating 
additional oceanic observations, while the assimilation of 
oceanic observations had little impact on the atmosphere.

Lorenz atmosphere and Jin ocean model  



A review of SCDA applied to Simple models

• Tardif et al. (2014): 

• Forcing the idealized ocean model with atmospheric analyses is 
inefficient at recovering the slowly evolving MOC  

• Daily assimilation rapidly leads to accurate MOC analyses, 
provided a comprehensive set of oceanic observations is 
available for assimilation  

• In the absence of sufficient observations in the ocean, the 
assimilation of time-averaged atmospheric observations 
proves to be more effective for MOC initialization than 
either forcing the ocean or assimilating sparse ocean 
observations.

Lorenz (1984) atmosphere and Stommel 3-box ocean 
model 



• Smith et al. (2015):  

• Incremental 4D-Var - “When compared to uncoupled 
initialisation, coupled assimilation is able to produce more 
balanced initial analysis fields, thus reducing initialisation 
shock and its impact on the subsequent forecast.”  
 
 
 

A review of SCDA applied to Simple models

idealized single-column atmos/ocean model

Truth
SCDAWCDA

xbUncpldForecasts:



• Smith et al. (2017):  

• "consider cross correlations rather than cross covariances 
because different components of the coupled state vector have 
very different levels of variability; standardizing prevents variables 
with large error variances from dominating the structure of the 
covariance matrix”  

• “Within the boundary region there is notable variation in the 
strength and structure of the error cross correlations 
between summer and winter, and between day and night. " 

• “atmosphere–ocean forecast error cross correlations are very 
state and model dependent…the static B formulation assumed in 
traditional 4D-Var may not be sufficient”

A review of SCDA applied to Simple models
idealized single-column atmos/ocean model



• Smith et al. (2018):  

• “compare methods for improving the rank and conditioning 
of multivariate sample error covariance matrices for [CDA].” 

•  “The first method, reconditioning, alters the matrix 
eigenvalues directly; this preserves the correlation 
structures but does not remove sampling noise."  

• “The second method, model state-space localization via 
the Schur product, effectively removes sample noise 
but can dampen small cross-correlation signals.”

A review of SCDA applied to Simple models

idealized single-column atmos/ocean model



• Lu et al. (2015): 

• The use of time-averaged 
surface temperature 
observations was 
necessary for SCDA to 
outperform WCDA, 
otherwise SCDA 
performed worse than 
WCDA in the midlatitudes 

• Results may have been 
influenced by the small 
ensemble size (16), coarse 
model grid (7.5º x 4.5º 
atmosphere and 2.8º x 
1.4º ocean), and use of 
monthly SST data

FOAM Low resolution Earth system GCM 

A review of SCDA applied to Intermediate 
Complexity models
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Modular Arbitrary Order Ocean Atmosphere Model 
(MAOOAM)

• Truncated QG model 

• 2-layer atmosphere (fast 
component), 1-layer ocean 
(slow component) 

• Coupled dynamics and 
thermodynamics 

• Tangent Linear Model (TLM) 
available for investigation of 
Lyapunov exponents and 
experimentation with 4D-Var De Cruz et al. (2016) 

Vannitsem and Lucarini (2016)



Examining the forced and coupled systems

• We examine: 

• Atmosphere forced 
by the coupled 
ocean state 

• Ocean forced by 
the coupled 
atmospheric state 

• Fully coupled 
modeling system
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Examining the forced and coupled systems

• We examine: 

• Atmosphere forced 
by the coupled 
ocean state 

• Ocean forced by 
the coupled 
atmospheric state 

• Fully coupled 
modeling system

*The attempt is to emulate the 
typical transition process in an 
operational center like NCEP



Lyapunov spectrum of coupled system, forced 
atmosphere, and forced ocean

• The discrepancy in scales can be 
characterized by the ratio the magnitudes of 
Lyapunov Exponents (LEs)



Lyapunov spectrum of coupled system, forced 
atmosphere, and forced ocean

*Note the LEs of the coupled system 
appear like a ‘cut and paste’ of the 

atmospheric and oceanic LEs

• The discrepancy in scales can be 
characterized by the ratio the magnitudes of 
Lyapunov Exponents (LEs)



Comparing forced ocean LEs with corresponding 
coupled LEs

• What appears 
as a ‘jump’ in 
the forced 
ocean Lyapunov 
spectrum 
becomes a 
smooth 
transition in the 
coupled system



Lyapunov stability of the forced system

• Even the forced atmosphere and forced ocean (shown 
below) do not synchronize when provided with accurate 
forcing. 

• Reducing the forcing accuracy by increasing the coupling 
time (h below) further degrades the synchronization 
strength 

Note the transition 
from forced to 

coupled

Error over time: Lyapunov exponents:



Data assimilation stabilizes growing errors

Forced Atmosphere Forced OceanCoupled System

• Data assimilation provides a forcing towards the ‘true’ 
state that constrains growing errors 

• The drives the (conditional) Lyapunov exponents 
negative, indicating stability

*Except here, the 
ensemble size is 

too small



Variational CDA

• Building the 
climatological 
error 
covariance 
matrix B

at
m

os
oc
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n

• Due to the highly disparate scales, the B matrix is ill-
conditioned (i.e. ratio of largest to smallest eigenvalue >>1) 

• Either transforming to the correlation matrix (e.g. Smith et 
al. 2018) or using the control variable transform can 
mitigate this issue



Climatological forecast error covariance B at 
various lead times

• The structure of B changes depending on the lead time of the forecast 

• This may indicate that building B matrices for different timescales may be beneficial



Assimilating observations in the entire coupled 
domain using 3D-Var, 4D-Var, and the ETKF

• The 3D-Var generally 
produces the lowest 
accuracy analysis. 

• The accuracy of 4D-
Var and the ETKF 
(k=40 or k=20) are 
comparable.

Atmosphere

Ocean



Assimilating only atmospheric observations 
using 3D-Var, 4D-Var, and the ETKF (k=40)

• The accuracy of the 4D-Var 
and ETKF are compatible in 
the atmosphere 

• The accuracy is degraded in 
the ocean compared to 
observing the full domain 

• There is a decadal oscillation 
in the error of the variational 
solution in the ocean, likely 
due to the static 
climatological error 
covariance matrix

~27.4 years

Atmosphere

Ocean



More explorations using the ETKF

• We examine a number of questions using the ETKF as our exploratory 
DA tool 

• For example we compare: 

• Observing coupled state versus only atmosphere or ocean 

• Observing the model native spectral space or transformed physical 
grid space 

• Using fixed or mobile observing network 

• Varying ensemble sizes and analysis cycle windows 

• Examining various forecast lead times



Stability of ETKF when observing  
atmos / ocean / coupled systems

Here, there is a large ensemble size (k=37) and a 
short assimilation window (tau=0.1)



Comparing ETKF with observations in atmos/ocean 
and in model spectral or transformed physical grid

• Best accuracy 
achieved when 
observing the entire 
coupled system and 
applying CDA 

• Applying CDA with 
only atmospheric 
observations is still 
relatively accurate in 
both domains. 

• Assimilating only 
ocean observations 
degrades 
atmospheric state 
estimate (as may be 
expected)



Examining stability while varying ensemble size 
and observing networks

• There is a more gradual 
transition to stability as 
ensemble size is increased 
(versus uncoupled system) 

• Best accuracy occurs when 
assimilating all observations 
(atmos/ocean) 

• With sufficient ensemble 
size, ocean observations 
alone can constrain the 
coupled system, at 
reduced accuracy.

At
m

os
ph

er
e 

RM
SE

O
ce

an
 R

M
SE

All obs Atmos obs

Ocn obs



CDA with only ocean observations

• Assimilation errors are 
smallest when using 
large ensembles and 
small analysis cycle 
windows 

• Observing the native 
model spectral space 
is more stable. 
Observing the 
transformed physical 
grid space leads to 
model instabilities 
that may indicate 
many more 
observations are 
needed



CDA with only ocean observations

Scenario for atmosphere improves with large 
ensemble sizes, and short analysis windows

• Assimilation errors are 
smallest when using 
large ensembles and 
small analysis cycle 
windows 

• Observing the native 
model spectral space 
is more stable. 
Observing the 
transformed physical 
grid space leads to 
model instabilities 
that may indicate 
many more 
observations are 
needed



Hybrid-Gain CDA

• Similarly to the forced systems, the Hybrid-Gain CDA is effective when 
observing only atmospheric observations at stabilizing the filter at small 
ensemble sizes, when the ETKF otherwise diverges 

• Unlike the forced system, the gaining of stability when observing only the 
ocean is very gradual with increasing ensemble size. The Hybrid-Gain CDA 
provides stability at low ensemble sizes and comparable results with large 
ensemble sizes.

(here, ETKF uses relaxation to prior)



Forecast accuracy at various lead times

*RMSE of forecasts with lead times ranging from 0 to 10 days initialized from the analyses produced from 36,000 DA cycles

• Forecast accuracy in MAOOAM initialized with ETKF is similar in atmosphere for  
SCDA, WCDA, and uncoupled perfect forcing case. Diverges for noisy forcing 
case. 

• Forecast accuracy in the ocean is most accurate with SCDA for the first 48 hours 
versus the perfect forcing case, and out to about 1 week versus the WCDA cases.

Atmosphere

Ocean

**noisy forcing uses white noise with magnitude 10% of climatological variability



Overview

• Brief Bio/background 

• Motivation for Coupled Data Assimilation (CDA) 

• Prior results using Strongly Coupled Data Assimilation 
(SCDA) 

• Our results using SCDA with a simple coupled QG model 

• Extending to more realistic systems



SST and Surface Wind Interaction

• Stability of atmospheric boundary layer is 
affected by SST 

• Wind stress divergence correlates with 
cold to warm SST, and wind stress 
convergence with warm to cold SST, 
strongest with winds aligning with SST 
gradient

Chelton et al. (2001)

Chelton and Xie (2010)

• Due to sensitivity in 
lateral variations, the 
wind stress curl is 
strongest where 
winds align with 
isotherms.



Applying SCDA to an Intermediate Complexity 
model

• Sluka at al. (2016):  

• Assimilate atmospheric observations to update the 
ocean directly via SCDA and compared to WCDA 

• T30 atmosphere with 2º ocean telescoping to 0.25º in 
tropics, using LETKF with an ensemble size of 40 
members updated at a 6-hour analysis cycle 

• Shows large reduction in errors using SCDA vs WCDA

Coupled SPEEDY/NEMO model

Sluka, Penny, Kalnay, Miyoshi (2016)



a) b)

c) d)

MidLat - NH Tropics MidLat - SH Global

Rawinsondes (T, U, V, q, Ps) AIRS (T, q)

Sluka et al. (2016)

Reduction in analysis error using 
SCDA versus WCDA baseline
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Reduction in analysis error using 
SCDA versus WCDA baseline

Surface T and S 
RMSE reduction

Zonal average RMSE 
reduction in the 

Pacific

Zonal average RMSE 
reduction in the 

Atlantic
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There are feedback 
effects reducing errors 

in the surface 
atmospheric fields as 

well.

Reduction in analysis error using 
SCDA versus WCDA baseline



Coupled Anomalies

• Relationship between slowly 
varying SST anomalies and low-
level (850 mb) atmospheric 
vorticity anomalies.

• Examination of CMIP5 model 
output and NOAA reanalysis 
products show coupled 
anomalies driven by atmos in 
the midlatitudes and by the 
ocean in the tropics.

• Coupled anomalies exist in 
Atmospheric reanalyses due to 
assimilation of observations

Ruiz-Barradas et al. (2017)

Premise of 
attribution:



Geographically Dependent benefits of SCDA

• Additional work with the 
SPEEDY/NEMO coupled 
model (Sluka, 2018 Ph.D. 
Thesis) indicates similar 
patterns of improvement 
due to SCDA 

• For example: 
observations of the 
‘downstream’ system 
improve ‘upstream’ state



Coupled Data Assimilation

• Additional experiments 
show that using SCDA to 
assimilate observations 
across domains tends to 
improve the coupled 
model state when 
observations are 
assimilated from the 
‘downstream’ 
component to correct 
the ‘upstream’ state 
(w.r.t. information flow).

Sluka Ph.D. Thesis

SCDA - WCDA errors (blue is improved)



Estimating Vertical Error Correlations
Using real data, vertical localization appears 
necessary, e.g. in the Northern Atlantic/
Pacific (below), but the exact error 
correlations are model-dependent (right) - 
meaning there are lingering coupled 
modeling errors that need to be addressed.

Sluka (2018) Courtesy: Takuma Yoshida



Conclusion

• SCDA produces superior coupled state estimates and forecasts in 
idealized scenarios (vs. uncoupled or WCDA) 

• With appropriate configuration, 1-way strong coupling can also 
constrain an unobserved component of the coupled system 

• Additional complications arise as model complexity increases, so 
increased study of CDA is needed with more realistic Earth system 
models. 

• Applying SCDA to coupled models using real observational data will 
likely require improvements to the modeling at the interface.

* The work applying CDA to the MAOOAM coupled QG model will be 
available online in the Journal of Advances in Modeling Earth Systems 
(JAMES) in the near future - Penny et al. (2019).


