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Assimilation in the unstable subspace (AUS)

● Numerical results demonstrate that the skill of ensemble DA methods in 
chaotic systems is related to dynamic instabilities [Ng et al. 2011].

● Asymptotic properties of ensemble-based covariances relate to the multiplicity 
and strength of unstable Lyapunov exponents [Sakov & Oke 2008; Carrassi et al. 2009].

● Trevisan et al. proposed filtering methodology for dimensional reduction to 
exploit this property called Assimilation in the Unstable Subspace.

● The goal of AUS is to dynamically target

–  corrections [Trevisan et al. 2010; Trevisan & Palatella 2011; Palatella & Trevisan 2015] and

–  observations [Trevisan & Uboldi 2004; Carrassi et. al. 2007]

in data assimilation design to minimize the forecast uncertainty while 
reducing the computational burden of DA.
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A mathematical framework for AUS
● A mathematical framework for AUS is established for perfect, linear models.

● Asymptotically, the support of the KF forecast uncertainty is confined to the span 
of the unstable-neutral BLVS [Gurumoorthy et al. 2017; Bocquet et al. 2017].

● This is likewise demonstrated for the smoothing problem [Bocquet & Carrassi 2017].

● This work extends the mathematical framework for AUS to linear, imperfect 
models.

● We bound the forecast uncertainty in terms of the dynamic expansion of errors 
relative to the constraints due to observations, the precision therein.

● We produce necessary and sufficient conditions for the boundedness of 
forecast errors.

● This work extends the central hypotheses of AUS, to model error. 
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The square root Kalman filter 
● Linear model and observation processes are given by 

● The square root forecast error Ricatti equation is given     
[Bocquet et al. 2017]

where                       and                     is a rank     square root 
[Tippet et al. 2008]. 
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Stabilizing errors with observations

● We represent the minimal observational constraint by

● We will recursively apply the inequality
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Geometrically bounding the square root

● We denote 

and bound the forecast covariance at time     :
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Bounding forecast errors

● The projection of the forecast error is bounded in the       backwards 
Lyapunov vector whenever we have

● The inequality is trivially true for any stable mode, even when                

and there are no observations: 
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Sufficient conditions for bounded forecast error

● If the anomaly dimension is greater than the observational 
dimension, then            .  

● Let anomaly dimension     observational dimension, and

                      

then the forecast error is bounded [Grudzien et al. 2017].
● It was noted previously under ideal assumptions [Carrassi et al. 2008], 

we now prove this a generic condition for all perfect models:

if observations are confined to the unstable-neutral subspace, with the 
above minimal precision, the forecast error of the (reduced rank) 
Kalman filter [Bocquet et al. 2017] is uniformly bounded [Grudzien et al. 2017]. 
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Necessary conditions for bounded forecast error
● The maximal observational constraint is described by

● Assume the forecast error is uniformly bounded, then

from which we recover a necessary condition: 

the maximal observational constraint is stronger than the maximal     
instability which forces the model error [Grudzien et al. 2017].
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Dynamics of uncertainty in the stable subspace
● The uncertainty in the stable BLVs is bounded independently of 

filtering [Grudzien et al. 2017].
● Still, the uniform bound may be impractically large.  In a reduced 

rank square root approximation, the error in the stable subspace may 
cause the filter to diverge.

● This was previously noted, due to the non-linear interactions of 
uncertainty in perfect models [Ng et al. 2011].  

● This was corrected as a second order term in EKF-AUS for nonlinear 
perfect models [Palatella & Trevisan 2015].

● We demonstrate this is an irreducible, first order effect in the 
presence of model error.
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The model invariant evolution of uncertainty

● Suppose model error is time invariant and spatially 
uncorrelated in a basis of backwards Lyapunov vectors.

● The evolution of the freely forecasted uncertainty in the        
BLV is given by

                                                      [Grudzien et al. 2017].

● For any stable BLV, the free uncertainty can be stably 
computed recursively by QR factorizations [Grudzien et al. 2017]. 
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Transient instability in the stable subspace
● We study discrete, 

linearized Lorenz '96 
with 10 dimensions  
and 6 stable modes.

● We vary the forcing 
parameter   . 

● Variability in the local 
Lyapunov exoponents 
of the stable modes 
forces transient 
instabilities.
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Dynamically selected observations
● Observations should minimize the forecast uncertainty given a fixed 

dimension of the observational space              .
● For an arbitrary, linear observation operator we take the QR 

factorization of the transpose

● This is the choice of an optimal subspace representation of the 
uncertainty, given by the span of the columns of        .

● In perfect models, we know this is the span of the unstable and 
neutral backwards Lyapunov vectors [Bocquet et al. 2017].  Our work 
verifies the dynamic observation paradigm utilizing bred vectors in 
AUS [Carrassi et al. 2008].
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Dynamic observations and the forecast 
covariance 
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The unconstrained stable forecast
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Conclusion
● AUS methodology can be used for reduced rank square root filters 

in the presence of model error, following this framework:
– Dynamically observe the unstable, neutral and weakly stable modes.

– Corrections to the state estimate should account for the growth of error in 
all of the above directions.

– Observations in this space should should satisfy a minimum precision:       
                         

– Unfiltered error in stable modes is bounded by the freely evolved 
uncertainty, and can be estimated offline.

● Implementing the above framework is ongoing work.
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