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Data Assimilation setup

We consider x, θ to have come from a model

θ̇ = 0,

ẋ = f(x, θ, t)

with the interpretation that θ represents parameters and x represents tracers in
the flow. Our goal is to estimate the parameters θ affecting a flow, given
observations xo of passive tracers in the flow.

As usual we employ Bayes’ rule
to formulate the data assimilation problem:

p(θ, x|xo) ∝ p(xo|θ, x)p(θ, x)
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(Standard, naive) particle filters

The particle filter sequentially approximates the distribution of θ at time n by a

set {θ(i)n , w
(i)
n }, i = 1, . . . , N of particles and weights.

The weight update for the i-th particle is

w(i)
n ∝ w

(i)
n−1 p(x

o
n|x(i)n , θ(i)n )

≈w(i)
n−1 exp

(
−1

2
(xon − x(i)n )TR−1(xon − x(i)n )

)
,

where R is the covariance matrix for the observations.

The key quantity by which the particle filter gains information is the innovation,

xon − x
(i)
n .
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Toy model

We consider a kinematic traveling wave model in the co-moving frame, perturbed
by an oscillatory disturbance and stochastically perturbed in the x1-direction:

dx1 = c−A sin(Kx1) cos(x2) + εl1 sin(k1(x1 − c1t)) cos(l1x2) + σdW (1)

dx2 = AK cos(Kx1) sin(x2) + εk1 cos(k1(x1 − c1t)) sin(l1x2). (2)

We will perform experiments to attempt to ‘discover’ the true values of ε, and/or
k1, given all the other parameters are fixed and given observations from a run with
the ‘true’ parameters.

This flow contains two gyres. For the value ε = 0.3 that we choose to be the
truth, tracer trajectories inside the gyres are dominated by chaotic advection on
long time scales.
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Particle Filter innovation

What will the particle filter do if we initialise all tracers in the boundaries of the
gyres? Let us look at the innovations...
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(a) Observation taken at t = 20.
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(b) Observation taken at t = 30.

The figures show experiments in which we uniformly spaced 2000 guesses for ε in
[0, 1], numerically integrated 50 tracers using each value of ε, and calculated the
innovation.
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Coherent patterns

We would like to perform Data Assimilation by assimilating the pattern of the
observed tracers. In so doing, we hope to exploit the robustness of coherent

patterns to peturbations, while preserving whatever information the tracers carry
on the model parameters.
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Coherent patterns
Almost-invariant sets

Trajectories stay in the almost-invariant sets for a comparatively long time before
escaping to another region [Dellnitz and Jung 99].
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Coherent patterns
Coherent sets

Coherent sets are regions in state space, for example a coherent vortex or
nonlinear jet, that move along with the flow without dispersing. Coherent sets
must also be robust under small diffusive peturbations.
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Coherent patterns
Usage in Data Assimilation

We rely on numerical methods that extract the coherent pattern from data, so
that we can produce both a ‘simulated’ pattern (extracted from simulated tracer
positions) and an ‘observed’ pattern (extracted from data).
We use PCA to find the almost-invariant sets, shown here for many tracers:

and for few tracers:
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Assimilating patterns, p1

Suppose the random variable yo represents the observed coherent pattern. The
updated statement of Bayes’ rule is that

p(θ|yo) ∝ p(yo|θ)p(θ),

where

p(yo|θ) =
∫
p(yo|θ, x0:n)p(x0:n|θ)dx0:n

...is hard to evaluate.

We proceed by replacing x0:n in the likelihood function in
the integral with x̂0:n(θ), a realisation of x0:n given θ, to obtain

p(yo|θ) ≈ p(yo|θ, x̂0:n(θ)).
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Assimilating patterns, p2

Unfortunately we still cannot calculate p(y|θ, x̂0:n(θ)). We turn instead to an
Approximate Bayesian Computation (Rubin, 1984; Sisson, Fan, Tanaka, 2007),
which uses a distance function ρ to substitute for the likelihood function.

A basic algorithm description is

Algorithm 0

Step 1. Sample θ ∼ p(θ)
Step 2. Sample y ∼ p(y|θ)
Step 3. Accept θ if ρ(y, yo) ≤ ε.
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SMC-ABC

Algorithm 0

Step 1. Sample θ ∼ p(θ)
Step 2. Sample y ∼ p(y|θ)
Step 3. Accept θ if ρ(y, yo) ≤ ε.

In this way all ABC algorithms sample from

pε(θ, y|yo) ∝ p(y|θ)p(θ)Iε(y),

where

Iε(y) =

{
1 for ρ(y, yo) < ε,

0 otherwise.

We choose to use the Hellinger distance for ρ, so the fundamental source of
information in our ABC scheme is the Hellinger distance between an observed
pattern and a simulated pattern.
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Building blocks for DA schemes - innovation vs Hellinger
distance
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(b) t=30

We repeat the prior experiment, now including results for the Hellinger distance
between the observed pattern and the simulated pattern at each value of ε.
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Final Algorithms

We used the merging Particle Filter from (Nakano, Ueno, Higuchi, 2007). This
scheme provides a way to gain sample diversity in the resampling step, and the
weights are designed to preserve the sample and variance of the original sample.

We used a Sequential Monte Carlo implementation of ABC from (Del Moral,
Doucet, Jasra, 2011). This scheme employs an adaptive sequence of tolerance
levels ε to control the rate of sample collapse towards the posterior. A
Metropolis-Hastings algorithm is used in the SMC-ABC to search parameter space
in lieu of a resampling algorithm.

We control the computational cost of each method to be similar by limiting the
number of particles in SMC-ABC.
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Numerical Results
Initial tracer locations

(a) Uniform initial tracer deployment. (b) Tracers deployed within gyre boundaries.

This experiment shows error results from 20 runs of the Particle Filter (blue)
and SMC-ABC (green), assimilating a single observation at t = 30. Dashed lines
indicate mean error; patches give the 10% and 90% quartiles.
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Numerical Results
Observation time step; multiple parameters

Left:
Mean error in estimating parameters in the Particle Filter (blue) and

SMC-ABC (green). Dashed lines show the mean error of 20 repetitions from
each numerical method, while the coloured patches show the 10% and 90%
percentiles. Left: Mean error in estimating both ε and k1. Right: Error in

estimating the individual parameters.
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Summary

-To our knowledge, this is the first attempt to use coherent patterns in
(Lagrangian) data assimilation.

-In contrast to previous work, the tracer trajectories are not assimilated directly
but instead a coherent structure or pattern is assimilated.

-our numerical results demonstrate that this new approach is remarkably superior
to the trajectory-based Lagrangian DA (employing the standard/naive particle
filter) in the situation where the number of tracers is large and the drifter
trajectories are dominated by chaotic advection.
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