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Model evidence
For a modelM simulating an unknown process such that:

xk =M(xk−1), (1)

whereM : RM → RM .

And for an ideal infinite set of observations of the same process,

yK : = {yK , yK−1, ..., y1, y0, ..., y−∞},

such that:
yk = Hk (xk ) + εk , (2)

where Hk : RM → Rd and εk represents observation error.

Model evidence (marginal likelihood of the observations)

p(yK :|M) =

∫
dx p(yK :|x)p(x). (3)

Defined as a “climatological” model evidence
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Model evidence using data assimilation

We rather define a contextual model evidence i.e. conditioned on the
present

• p(yK :|M)→ p(yK :1|y0:) [M is dropped for clarity]

In the context of present time, we marginalize over x0 and not over x
The Contextual Model Evidence (CME)

p(yK :1|y0:) =

∫
dx0 p(yK :1|x0)p(x0|y0:) (4)

with

• the likelihood of the observations

• the posterior density (state estimation DA product)
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Estimating the CME using DA methods
• ensemble Kalman filter
• 4D ensemble methods (En-4D-Var/IEnKS)

Carrassi et al. (2017)

Conclusions
• Accurate estimation of the CME using DA
• Accuracy related to DA method’s sophistication
• Yet, not proportional

⇒We use the EnKF formulation
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CME formulation

The CME’s EnKF formulation [y0: is dropped for clarity]

p(yK :1) ≈
K∏

k=1

(2π)−
d
2 |Σk |−

1
2 exp

{
−1

2
[yk −Hk (xf

k )]TΣ−1
k [yk −Hk (xf

k )]

}
(5)

Hannart et al. (2016) ; Carrassi et al. (2017)
with Σk = Hk Pf

k HT
k + Rk where

Pf
k : prior error covariance matrix at time k ,

Rk : observation error covariance matrix,

Hk : observation operator at time k ,
Hk : its linearization.

The objective of this study

Problem in high dimension:

Ensemble DA methods suffer from sampling errors in high dimension

and are usually used with localization

⇒ Crucial to consider how to deal with localization in the CME
formulation
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Domain localization
• Seperate analysis: DA performed for each model gridpoint s ∈ Γ

• Box car: Only the neighboring obs. are used in the analysis
i.e. with y|s, H|s, R|srestricted to a disk around s of radius ρloc

• Tapering: a (diagonal) localization matrix L applied such that

R̃
−1
|s = L ◦ R−1

|s = (R−1
|s )i,j · (L)i,j (6)

(L)i,i is equal to 1 if i = s and decreases to 0 outside of the disk

ρ
loc

S

⇒ Derive the CME for each gridpoint using y|s, H|s, R̃
−1
|s



Model evidence and data assimilation The Domain Localized CME Numerical experiments Conclusions

Domain localization
• Seperate analysis: DA performed for each model gridpoint s ∈ Γ

• Box car: Only the neighboring obs. are used in the analysis
i.e. with y|s, H|s, R|srestricted to a disk around s of radius ρloc

• Tapering: a (diagonal) localization matrix L applied such that

R̃
−1
|s = L ◦ R−1

|s = (R−1
|s )i,j · (L)i,j (6)

(L)i,i is equal to 1 if i = s and decreases to 0 outside of the disk

ρ
loc

S

⇒ Derive the CME for each gridpoint using y|s, H|s, R̃
−1
|s



Model evidence and data assimilation The Domain Localized CME Numerical experiments Conclusions

DL-CME
At each gridpoint s ∈ Γ, it is possible to derive

p(yK :1|s) ≈
K∏

k=2

∫
dxk p(yk|s|xk−1)p(xk−1|yk−1:|s)

∫
dx0 p(y1|s|x0)p(x0|y0:)

Local CME

p(yK :1|s)≈
K∏

k=1

(2π)−
d̃
2 |Σ̃k |−

1
2 exp

{
−1

2
(yk |s − Hk |sxf

k )TΣ̃−1
k (yk |s − Hk |sxf

k )

}
(7)

with Σ̃k = Hk |sPf
k HT

k |s + R̃k|s and d̃ the size of yk |s.

Euristic global estimator
Domain localized CME (DL-CME)

p̃(yK :1) = exp

{∑
s∈Γ

w(s) ln{p(y|s)}

}
, (8)

with w(s), scalar weights inversely proportional to the localization radius.
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CME for model selection
Two models: M0 andM1

and their respective model evidences:

p0(y) = p(yK :1|y0:,M0) and p1(y) = p(yK :1|y0:,M1)

Model selection indicator with global and domain localized CME:

• G-CME: ∆p(M0,M1) = ln{p1(y)} − ln{p0(y)} > 0, ifM1 correct

• DL-CME: ∆p̃(M0,M1) = ln{p̃1(y)} − ln{p̃0(y)} > 0, ifM1 correct

The scope of the following experiments is to compare
the G-CME’s and the DL-CME’s model selection abilities
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L95 - Model selection problem
Lorenz-95 model

dxi

dt
= (xi+1 − xi−2)xi−1 − xi + F, (9)

for i = 1, ...,M = 40 and F represents the external forcing.

The models

• M1: F ≡ F1 = 8

• M0: F ≡ F0 varying

for T = 105 DA cycles

The observations

M1 traj. perturbed: ε ∈ N (0, 1)

Obs. error cov. matrix: R = I40

Obs. grid: ∆t = 0.05 and Hk = I40

DA setup

LETKF - 10 members

Localization radius: ρloc = 5 (tuned forM0)

Inflation: tuned for each model
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L95 - Sensitivity to the forcings
• ROC curves assess the quality of the selection indicators for various

confidence thresholds, from a diagonal curve for random to 1 for perfect
selection

• F0 = 8.1 and F0 = 8.9 ; ρloc = 5 ; K = 1
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1- For F0 = 8.1, all indicators close to random for the very close incorrect model

2- DL-CME still improves over the G-CME and the reference RMSE

3- The reference G-CME40 remains the best indicator

4- For F0 = 8.9, all indicators improve and the DL-CME outperforms G-CME40
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L95 - Sensitivity to localization
• GINI index quantifies a ROC curve performance, from 0 for random to 1 for

perfect selection
• F0 = 8.5 ; varying ρloc ; K = 1
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1- The two CMEs have better selecting skills than the reference RMSE

2- The DL-CME shows a constant improvment over the G-CME

⇒ The DL-CME improvment doesn’t seem sensitive to the tuning of ρloc
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SPEEDY - Model selection problem

The SPEEDY model (Molteni, 2003)

A global atmospheric model resolving the large scale dynamic

• Res.: 96× 48× 7 ∼ O(104)

• Vor, Div, T, Q, log(ps)

• Hydrostat., σ-coord, spectral-transf.

• Convect., condens., clouds, radiat.

Twin experiment
• True trajectory: 5 month SPEEDY run (01/02-30/06/1983)

• 2 versions of the model: different convective relaxation time parameter

• Correct parameter: τcnv = 6hs
• Incorrect parameter: τcnv = 5hs50min

• Artificial observations on [u, v ,T ,Q, ps]
(Frequ.: 6h, Spat. distrib.: random on 1/2 x grid)

• DA: LETKF, 50 members (Miyoshi, 2005, 2007)
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SPEEDY - Probability of selection

• Probabilities of selection: number of successfull selection

• DA using all obs. ; the CME computed for seperate var.

• K = 1 (6 hours) and K = 12 (3 days)
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1- For (u,v,T), DL-CME has better selection skills (small impact of modified parameter)

2- For Q, G-CME and DL-CME have closer selection skills

3- For K = 12, static covariance hyp. may be ill-adapted for long evidence window
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Evidence maps

• Maps of differences for local CME and local RMSE averaged over 5 months

Local CME diff.: Q
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1- The local CME map reveals different geographical information

2- This information could be used to understand the impact of the altered param.
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Conclusions

• Model evidence is a useful statistic tool
(Winiarek et al., 2011 ; Elsheikh et al., 2014 ; Carson et al., 2016 ...)

• Carrassi et al. (2017) proved a CME can be computed using DA

• We developed a new CME formulation taking into account
localization for high dimensional applications

• We showed its skills as a model selection metric

• We exhibited the spatial diagnosing potential of local CME

• Applications of the CME:
- Extreme event attribution (Hannart et al., 2016)
- Parameter estimation (Carrassi et al., 2017 )
- Model selection (Metref et al., 2017 )
- Climate change attribution (Ongoing work)
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