12th International EnKF workshop

Estimating model evidence using ensemble-based data assimilation with localization

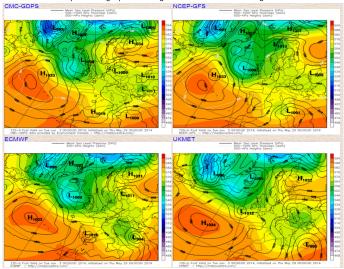
The model selection problem

Sammy Metref, Juan Ruiz, Alexis Hannart, Alberto Carrassi, Marc Bocquet and Michael Ghil

Project DADA

▲□▶ ▲舂▶ ▲理≯ ▲理≯ 三語 …

June 12th, 2017



A comparison of geopotential heights at 500hPa for 4 short range models

Outline

▲ロト ▲母 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Model evidence and data assimilation Contextual Model Evidence CME formulation

The Domain Localized CME Localization in DA Localization and CME

Numerical experiments

Low-order atmospheric model Primitive Equations atmospheric model

Conclusions

Numerical experiments

Conclusions

Model evidence

For a model \mathcal{M} simulating an unknown process such that:

$$\mathbf{x}_{k} = \mathcal{M}(\mathbf{x}_{k-1}), \tag{1}$$

where $\mathcal{M} : \mathbb{R}^M \to \mathbb{R}^M$.

And for an ideal infinite set of observations of the same process,

$$\mathbf{y}_{\mathcal{K}:} = \{\mathbf{y}_{\mathcal{K}}, \mathbf{y}_{\mathcal{K}-1}, ..., \mathbf{y}_{1}, \mathbf{y}_{0}, ..., \mathbf{y}_{-\infty}\},\$$

such that:

$$\mathbf{y}_{k} = \mathcal{H}_{k}(\mathbf{x}_{k}) + \boldsymbol{\epsilon}_{k}, \qquad (2)$$

where $\mathcal{H}_k : \mathbb{R}^M \to \mathbb{R}^d$ and ϵ_k represents observation error.

Model evidence (marginal likelihood of the observations)

$$p(\mathbf{y}_{K}|\mathcal{M}) = \int d\mathbf{x} \ p(\mathbf{y}_{K}|\mathbf{x})p(\mathbf{x}).$$
(3)

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Numerical experiments

Conclusions

Model evidence

For a model \mathcal{M} simulating an unknown process such that:

$$\mathbf{x}_{k} = \mathcal{M}(\mathbf{x}_{k-1}), \tag{1}$$

where $\mathcal{M} : \mathbb{R}^M \to \mathbb{R}^M$.

And for an ideal infinite set of observations of the same process,

$$\mathbf{y}_{K:} = \{\mathbf{y}_{K}, \mathbf{y}_{K-1}, ..., \mathbf{y}_{1}, \mathbf{y}_{0}, ..., \mathbf{y}_{-\infty}\},\$$

such that:

$$\mathbf{y}_{k} = \mathcal{H}_{k}(\mathbf{x}_{k}) + \boldsymbol{\epsilon}_{k}, \qquad (2)$$

where $\mathcal{H}_k : \mathbb{R}^M \to \mathbb{R}^d$ and ϵ_k represents observation error.

Model evidence (marginal likelihood of the observations)

$$\rho(\mathbf{y}_{K}|\mathcal{M}) = \int d\mathbf{x} \ \rho(\mathbf{y}_{K}|\mathbf{x})\rho(\mathbf{x}). \tag{3}$$

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Defined as a "climatological" model evidence

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Model evidence using data assimilation

We rather define a contextual model evidence i.e. conditioned on the present

• $p(\mathbf{y}_{\mathcal{K}:}|\mathcal{M}) \rightarrow p(\mathbf{y}_{\mathcal{K}:1}|\mathbf{y}_{0:})$ [\mathcal{M} is dropped for clarity]

In the context of present time, we marginalize over \mathbf{x}_0 and not over \mathbf{x}

The Contextual Model Evidence (CME)

$$p(\mathbf{y}_{K:1}|\mathbf{y}_{0:}) = \int d\mathbf{x}_0 \ p(\mathbf{y}_{K:1}|\mathbf{x}_0) p(\mathbf{x}_0|\mathbf{y}_{0:})$$
(4)

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Model evidence using data assimilation

We rather define a contextual model evidence i.e. conditioned on the present

• $p(\mathbf{y}_{\mathcal{K}:}|\mathcal{M}) \rightarrow p(\mathbf{y}_{\mathcal{K}:1}|\mathbf{y}_{0:})$ [\mathcal{M} is dropped for clarity]

In the context of present time, we marginalize over \boldsymbol{x}_0 and not over \boldsymbol{x}

The Contextual Model Evidence (CME)

$$p(\mathbf{y}_{K:1}|\mathbf{y}_{0:}) = \int d\mathbf{x}_0 \ p(\mathbf{y}_{K:1}|\mathbf{x}_0) p(\mathbf{x}_0|\mathbf{y}_{0:})$$
(4)

with

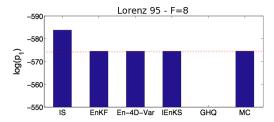
- the likelihood of the observations
- the posterior density (state estimation DA product)

Numerical experiments

Conclusions

Estimating the CME using DA methods

- ensemble Kalman filter
- 4D ensemble methods (En-4D-Var/IEnKS)



Carrassi et al. (2017)

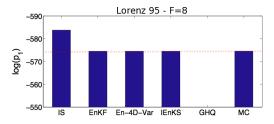
▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Numerical experiments

Conclusions

Estimating the CME using DA methods

- ensemble Kalman filter
- 4D ensemble methods (En-4D-Var/IEnKS)



Carrassi et al. (2017)

Conclusions

- Accurate estimation of the CME using DA
- Accuracy related to DA method's sophistication
- Yet, not proportional

⇒ We use the EnKF formulation

Model evidence and data assimilation $\circ \circ$

The Domain Localized CME 0 00 Numerical experiments

Conclusions

CME formulation

The CME's EnKF formulation

[**y**_{0:} is dropped for clarity]

$$p(\mathbf{y}_{K:1}) \approx \prod_{k=1}^{K} (2\pi)^{-\frac{d}{2}} |\boldsymbol{\Sigma}_k|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2} [\mathbf{y}_k - \mathcal{H}_k(\mathbf{x}_k^{\mathrm{f}})]^{\mathrm{T}} \boldsymbol{\Sigma}_k^{-1} [\mathbf{y}_k - \mathcal{H}_k(\mathbf{x}_k^{\mathrm{f}})]\right\}$$
(5)

with $\boldsymbol{\Sigma}_k = \boldsymbol{\mathsf{H}}_k \boldsymbol{\mathsf{P}}_k^{\mathrm{f}} \boldsymbol{\mathsf{H}}_k^{\mathrm{T}} + \boldsymbol{\mathsf{R}}_k$ where

 $\mathbf{P}_k^{\mathrm{f}}$: prior error covariance matrix at time k, \mathbf{R}_k : observation error covariance matrix, Hannart et al. (2016) ; Carrassi et al. (2017)

 \mathcal{H}_k : observation operator at time k, \mathbf{H}_k : its linearization.

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Model evidence and data assimilation ○○ The Domain Localized CME 0 00 Numerical experiments

Conclusions

CME formulation

The CME's EnKF formulation

[**y**_{0:} is dropped for clarity]

$$p(\mathbf{y}_{K:1}) \approx \prod_{k=1}^{K} (2\pi)^{-\frac{d}{2}} |\boldsymbol{\Sigma}_k|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2} [\mathbf{y}_k - \mathcal{H}_k(\mathbf{x}_k^{\mathrm{f}})]^{\mathrm{T}} \boldsymbol{\Sigma}_k^{-1} [\mathbf{y}_k - \mathcal{H}_k(\mathbf{x}_k^{\mathrm{f}})]\right\}$$
(5)

with $\boldsymbol{\Sigma}_k = \boldsymbol{\mathsf{H}}_k \boldsymbol{\mathsf{P}}_k^{\mathrm{f}} \boldsymbol{\mathsf{H}}_k^{\mathrm{T}} + \boldsymbol{\mathsf{R}}_k$ where

 $\mathbf{P}_k^{\mathrm{f}}$: prior error covariance matrix at time k, \mathbf{R}_k : observation error covariance matrix, Hannart et al. (2016) ; Carrassi et al. (2017)

 \mathcal{H}_k : observation operator at time *k*, **H**_k: its linearization.

The objective of this study

Problem in high dimension:

Ensemble DA methods suffer from sampling errors in high dimension and are usually used with localization

\Rightarrow Crucial to consider how to deal with localization in the CME formulation

Numerical experiments

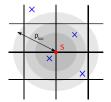
◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Domain localization

- Seperate analysis: DA performed for each model gridpoint $s \in \Gamma$
- Box car: Only the neighboring obs. are used in the analysis i.e. with y_{|s}, H_{|s}, R_{|s}restricted to a disk around s of radius ρ_{loc}
- Tapering: a (diagonal) localization matrix L applied such that

$$\widetilde{\mathbf{R}}_{|s}^{-1} = \mathbf{L} \circ \mathbf{R}_{|s}^{-1} = (\mathbf{R}_{|s}^{-1})_{i,j} \cdot (\mathbf{L})_{i,j}$$
(6)

 $(\mathbf{L})_{i,i}$ is equal to 1 if i = s and decreases to 0 outside of the disk



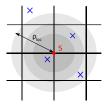
ション キョン キョン キョン しょう

Domain localization

- Separate analysis: DA performed for each model gridpoint $s \in \Gamma$
- Box car: Only the neighboring obs. are used in the analysis i.e. with $\mathbf{y}_{|s}$, $\mathbf{H}_{|s}$, $\mathbf{R}_{|s}$ restricted to a disk around s of radius ρ_{loc}
- Tapering: a (diagonal) localization matrix L applied such that

$$\widetilde{\mathbf{R}}_{|s}^{-1} = \mathbf{L} \circ \mathbf{R}_{|s}^{-1} = (\mathbf{R}_{|s}^{-1})_{i,j} \cdot (\mathbf{L})_{i,j}$$
(6)

 $(L)_{i,i}$ is equal to 1 if i = s and decreases to 0 outside of the disk



 \Rightarrow Derive the CME for each gridpoint using \mathbf{y}_{ls} , \mathbf{H}_{ls} , \mathbf{R}_{ls}

Model evidence and data assimilation

The Domain Localized CME ${}^{\odot}_{\bullet \, \odot}$

Numerical experiments

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Conclusions

DL-CME

At each gridpoint $s \in \Gamma$, it is possible to derive

$$p(\mathbf{y}_{K:1|s}) \approx \prod_{k=2}^{K} \int \mathrm{d}\mathbf{x}_{k} \, p(\mathbf{y}_{k|s}|\mathbf{x}_{k-1}) p(\mathbf{x}_{k-1}|\mathbf{y}_{k-1:|s}) \int \mathrm{d}\mathbf{x}_{0} \, p(\mathbf{y}_{1|s}|\mathbf{x}_{0}) p(\mathbf{x}_{0}|\mathbf{y}_{0:})$$

Local CME

$$p(\mathbf{y}_{K:1|s}) \approx \prod_{k=1}^{K} (2\pi)^{-\frac{\widetilde{a}}{2}} |\widetilde{\boldsymbol{\Sigma}}_{k}|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2} (\mathbf{y}_{k|s} - \mathbf{H}_{k|s} \mathbf{x}_{k}^{\mathrm{f}})^{\mathrm{T}} \widetilde{\boldsymbol{\Sigma}}_{k}^{-1} (\mathbf{y}_{k|s} - \mathbf{H}_{k|s} \mathbf{x}_{k}^{\mathrm{f}})\right\} \quad (7)$$

with $\widetilde{\Sigma}_k = \mathbf{H}_{k|s} \mathbf{P}_k^{\mathrm{f}} \mathbf{H}_{k|s}^{\mathrm{T}} + \widetilde{\mathbf{R}}_{k|s}$ and \widetilde{d} the size of $\mathbf{y}_{k|s}$.

The Domain Localized CME ${}^{\odot}_{\bullet \, \odot}$

Numerical experiments

Conclusions

DL-CME

At each gridpoint $s \in \Gamma$, it is possible to derive

$$p(\mathbf{y}_{K:1|s}) \approx \prod_{k=2}^{K} \int \mathrm{d}\mathbf{x}_{k} \, p(\mathbf{y}_{k|s}|\mathbf{x}_{k-1}) p(\mathbf{x}_{k-1}|\mathbf{y}_{k-1:|s}) \int \mathrm{d}\mathbf{x}_{0} \, p(\mathbf{y}_{1|s}|\mathbf{x}_{0}) p(\mathbf{x}_{0}|\mathbf{y}_{0:})$$

Local CME

$$p(\mathbf{y}_{K:1|s}) \approx \prod_{k=1}^{K} (2\pi)^{-\frac{\widetilde{d}}{2}} |\widetilde{\boldsymbol{\Sigma}}_{k}|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}(\mathbf{y}_{k|s} - \mathbf{H}_{k|s}\mathbf{x}_{k}^{\mathrm{f}})^{\mathrm{T}} \widetilde{\boldsymbol{\Sigma}}_{k}^{-1}(\mathbf{y}_{k|s} - \mathbf{H}_{k|s}\mathbf{x}_{k}^{\mathrm{f}})\right\}$$
(7)

with $\widetilde{\Sigma}_k = \mathbf{H}_{k|s} \mathbf{P}_k^{\mathrm{f}} \mathbf{H}_{k|s}^{\mathrm{T}} + \widetilde{\mathbf{R}}_{k|s}$ and \widetilde{d} the size of $\mathbf{y}_{k|s}$.

Euristic global estimator

Domain localized CME (DL-CME)

$$\widetilde{\rho}(\mathbf{y}_{K:1}) = \exp\left\{\sum_{s\in\Gamma} w(s) \ln\{\rho(\mathbf{y}_{|s})\}\right\},\tag{8}$$

with w(s), scalar weights inversely proportional to the localization radius.

Numerical experiments

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Conclusions

CME for model selection

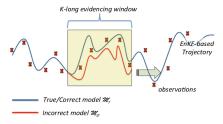
Two models: \mathcal{M}_0 and \mathcal{M}_1

and their respective model evidences:

 $p_0(\boldsymbol{y}) = p(\boldsymbol{y}_{\mathcal{K}:1} | \boldsymbol{y}_{0:}, \mathcal{M}_0) \text{ and } p_1(\boldsymbol{y}) = p(\boldsymbol{y}_{\mathcal{K}:1} | \boldsymbol{y}_{0:}, \mathcal{M}_1)$

Model selection indicator with global and domain localized CME:

- G-CME: $\Delta_{\rho}(\mathcal{M}_0, \mathcal{M}_1) = \ln\{p_1(\mathbf{y})\} \ln\{p_0(\mathbf{y})\} > 0$, if \mathcal{M}_1 correct
- DL-CME: $\Delta_{\widetilde{\rho}}(\mathcal{M}_0, \mathcal{M}_1) = \ln{\{\widetilde{\rho}_1(\mathbf{y})\}} \ln{\{\widetilde{\rho}_0(\mathbf{y})\}} > 0$, if \mathcal{M}_1 correct



Numerical experiments

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Conclusions

CME for model selection

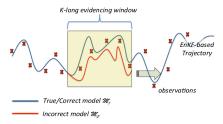
Two models: \mathcal{M}_0 and \mathcal{M}_1

and their respective model evidences:

 $p_0(\boldsymbol{y}) = p(\boldsymbol{y}_{\mathcal{K}:1} | \boldsymbol{y}_{0:}, \mathcal{M}_0) \text{ and } p_1(\boldsymbol{y}) = p(\boldsymbol{y}_{\mathcal{K}:1} | \boldsymbol{y}_{0:}, \mathcal{M}_1)$

Model selection indicator with global and domain localized CME:

- G-CME: $\Delta_{\rho}(\mathcal{M}_0, \mathcal{M}_1) = \ln\{p_1(\mathbf{y})\} \ln\{p_0(\mathbf{y})\} > 0$, if \mathcal{M}_1 correct
- DL-CME: $\Delta_{\widetilde{\rho}}(\mathcal{M}_0, \mathcal{M}_1) = \ln{\{\widetilde{\rho}_1(\mathbf{y})\}} \ln{\{\widetilde{\rho}_0(\mathbf{y})\}} > 0$, if \mathcal{M}_1 correct



The scope of the following experiments is to compare the G-CME's and the DL-CME's model selection abilities

L95 - Model selection problem

Lorenz-95 model

$$\frac{\mathrm{d}x_i}{\mathrm{d}t} = (x_{i+1} - x_{i-2})x_{i-1} - x_i + \mathsf{F}, \tag{9}$$

for i = 1, ..., M = 40 and F represents the external forcing.

The models

- \mathcal{M}_1 : $F \equiv F_1 = 8$
- \mathcal{M}_0 : $F \equiv F_0$ varying

for $T = 10^5$ DA cycles

The observations

 \mathcal{M}_1 traj. perturbed: $\epsilon \in \mathcal{N}(0, 1)$ Obs. error cov. matrix: $\mathbf{R} = \mathbf{I}_{40}$ Obs. grid: $\Delta_t = 0.05$ and $\mathbf{H}_k = \mathbf{I}_{40}$

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

DA setup

LETKF - 10 members

Localization radius: $\rho_{loc} = 5$ (tuned for \mathcal{M}_0)

Inflation: tuned for each model

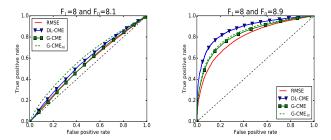
Numerical experiments

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Conclusions

L95 - Sensitivity to the forcings

- ROC curves assess the quality of the selection indicators for various confidence thresholds, from a diagonal curve for random to 1 for perfect selection
- $F_0 = 8.1$ and $F_0 = 8.9$; $\rho_{loc} = 5$; K = 1



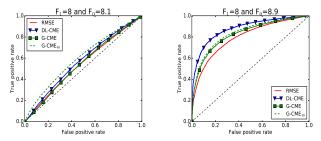
Numerical experiments

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Conclusions

L95 - Sensitivity to the forcings

- ROC curves assess the quality of the selection indicators for various confidence thresholds, from a diagonal curve for random to 1 for perfect selection
- $F_0 = 8.1$ and $F_0 = 8.9$; $\rho_{loc} = 5$; K = 1

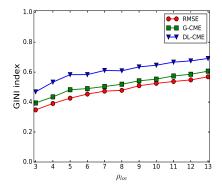


- 1- For $F_0 = 8.1$, all indicators close to random for the very close incorrect model
- 2- DL-CME still improves over the G-CME and the reference RMSE
- 3- The reference G-CME₄₀ remains the best indicator
- 4- For $F_0 = 8.9$, all indicators improve and the DL-CME outperforms G-CME₄₀

Numerical experiments

L95 - Sensitivity to localization

- GINI index quantifies a ROC curve performance, from 0 for random to 1 for perfect selection
- $F_0 = 8.5$; varying ρ_{loc} ; K = 1



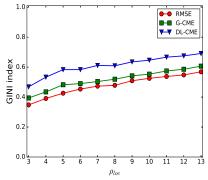
・ロト ・母 ト ・ヨ ト ・ヨ ・ つくで

Numerical experiments

= 900

L95 - Sensitivity to localization

- GINI index quantifies a ROC curve performance, from 0 for random to 1 for perfect selection
- $F_0 = 8.5$; varying ρ_{loc} ; K = 1



- 1- The two CMEs have better selecting skills than the reference RMSE
- 2- The DL-CME shows a constant improvment over the G-CME
 - \Rightarrow The DL-CME improvment doesn't seem sensitive to the tuning of ρ_{loc}

SPEEDY - Model selection problem

The SPEEDY model (Molteni, 2003)

A global atmospheric model resolving the large scale dynamic

- Res.: 96 × 48 × 7 ∼ O(10⁴)
- Vor, Div, T, Q, log(p_s)

- Hydrostat., σ -coord, spectral-transf.
- Convect., condens., clouds, radiat.

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Twin experiment

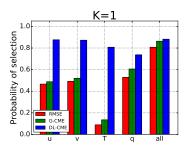
- True trajectory: 5 month SPEEDY run (01/02-30/06/1983)
- 2 versions of the model: different convective relaxation time parameter
 - Correct parameter: $\tau_{cnv} = 6$ hs
 - Incorrect parameter: $\tau_{cnv} = 5hs50min$
- Artificial observations on [u, v, T, Q, p_s] (Frequ.: 6h, Spat. distrib.: random on 1/2 x grid)
- DA: LETKF, 50 members (Miyoshi, 2005, 2007)

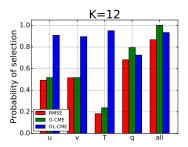
Numerical experiments

Conclusions

SPEEDY - Probability of selection

- Probabilities of selection: number of successfull selection
- DA using all obs. ; the CME computed for seperate var.
- K = 1 (6 hours) and K = 12 (3 days)





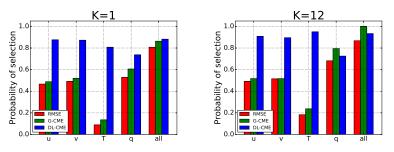
Numerical experiments

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで

Conclusions

SPEEDY - Probability of selection

- Probabilities of selection: number of successfull selection
- DA using all obs. ; the CME computed for seperate var.
- K = 1 (6 hours) and K = 12 (3 days)



- 1- For (u,v,T), DL-CME has better selection skills (small impact of modified parameter)
- 2- For Q, G-CME and DL-CME have closer selection skills
- 3- For K = 12, static covariance hyp. may be ill-adapted for long evidence window

Model evidence and data assimilation

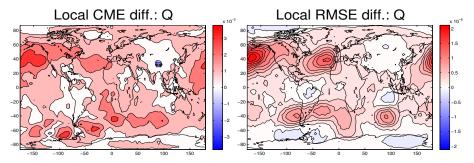
The Domain Localized CME o oo Numerical experiments

<ロト <問 > < 臣 > < 臣 > 二 臣

Conclusions

Evidence maps

• Maps of differences for local CME and local RMSE averaged over 5 months



Model evidence and data assimilation

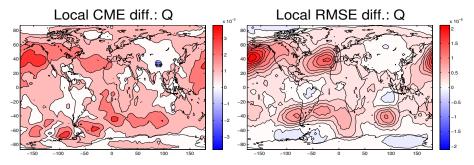
The Domain Localized CME o oo Numerical experiments

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 - のへで

Conclusions

Evidence maps

• Maps of differences for local CME and local RMSE averaged over 5 months



- 1- The local CME map reveals different geographical information
- 2- This information could be used to understand the impact of the altered param.

Numerical experiments

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Conclusions

Conclusions

- Model evidence is a useful statistic tool (*Winiarek et al., 2011 ; Elsheikh et al., 2014 ; Carson et al., 2016 ...*)
- Carrassi et al. (2017) proved a CME can be computed using DA
- We developed a new CME formulation taking into account localization for high dimensional applications
- · We showed its skills as a model selection metric
- We exhibited the spatial diagnosing potential of local CME
- Applications of the CME:
 - Extreme event attribution (Hannart et al., 2016)
 - Parameter estimation (Carrassi et al., 2017)
 - Model selection (Metref et al., 2017)
 - Climate change attribution (Ongoing work)

References

- Carrassi A., M. Bocquet, A. Hannart and M. Ghil: Estimating model evidence using data assimilation. Q. J. R. Meteorol. Soc., 143: 866-880. 2017
- Carson J, Crucifix M., Preston S., and RD. Wilkinson: Bayesian model selection for the glacial-interglacial cycle. ArXiv preprint arXiv:1511.03467. 2015
- Elsheikh A., I. Hoteit I and M. Wheeler: Efficient bayesian inference of subsurface flow models using nested sampling and sparse polynomial chaos surrogates. Comput. Methods Appl. Mech. Engrg., 269: 515537. 2014
- Hannart A., A. Carrassi, M. Bocquet, M. Ghil, P. Naveau, M. Pulido, J. Ruiz and P. Tandeo: DADA: Data assimilation for the detection and attribution of weather- and climate-related events. Clim. Change., 136: 155-174. 2016
- Metref S., J. Ruiz, A. Hannart, M. Bocquet, A. Carrassi and M. Ghil: Estimating model evidence using ensemble-based data assimilation with localization - The model selection problem. Q. J. R. Meteorol. Soc. In preparation
- Miyoshi T.: Ensemble Kalman filter experiments with a primitive-equation global model. Ph.D. dissertation, University of Maryland. 2005
- Miyoshi T., S. Yamane and T. Enomoto: . Localizing the error covariance by physical distances within a Local Ensemble Transform Kalman Filter (LETKF). SOLA, 3: 89-92. 2007
- Molteni F.: Atmospheric simulations using a GCM with simplified physical parameterizations. I: model climatology and variability in multi- decadal experiments. Clim. Dyn., 20: 175-191. 2003
- Winiarek V., J. Vira, M. Bocquet, M Sofiev and O. Saunier: Towards the operational estimation of a radiological plume using data assimilation after a radiological accidental atmospheric release. Atmos. Env., 45: 2944-2955. 2011