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Context and outline

Variational data assimilation

• The analysis relies on a cost function minimization.

• This method can miss the global minimum.

• Quasi static (QS) minimizations use the cost function temporal

structure to localize the global minimum.

I Pires et al. 19961 introduced it in one cycle of a variational assimilation.
I We place it in multiple cycles of an ensemble variational assimilation.

1C. Pires, R. Vautard, and O. Talagrand. On extending the limits of variational

assimilation in nonlinear chaotic systems.

Tellus A, 48:96�121, 1996
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Context and outline

Outline

Objective: Justify the use of QS minimizations in sequential ensemble

variational data assimilation with a perfect model.

1 Basic algorithms
I 4D-Var and IEnKS

2 Performance quanti�cation of an assimilation
I Empirical and Theoretical

3 Long term impact of the cycling
I Simplest theoritical case
I Chaotic case

4 Quasi static algorithms

5 Numerical experiments
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Basic algorithms
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Basic algorithms

The data assimilation window (DAW)

Cycling is controled by the DAW parameters:

• During the analysis, observations (obs) from time tK to tL are

assimilated.
• During the propagation, the DAW is shifted S time steps in the future.
• Single data assimilation imposes K = L− S + 1 (no overlap). Thus S

is also the DAW number of observations.
• Filtering: K = L = 0 and S = 1.

Analysis

Propagation

Analysis

xb
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yK yL
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S

xa
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M
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Figure: Two �rst cycles of
an assimilation with
K = 2, L = 4 and S = 3.
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Basic algorithms

Bayes' framework

p (x0) p (x0|yL:K)

p (yL:K |x0)

p (xS |yL:K) p (xS |yS+L:K)

p (yS+L:S+K |xS)

Analysis Forecast

M

Analysis

• The exact cost function at the kth cycle is

G (xkS |ykS+L:K ) ∝ − ln p (xkS |ykS+L:K ) . (1)

• Bayes' theorem yields

G (xkS |ykS+L:K ) ∝− ln p
(
xkS |y(k−1)S+L:K

)
, (bg term) (2)

− ln p (ykS+K :kS+L|xkS) . (obs term) (3)
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Basic algorithms

Observation and background term

• With Gaussian errors, the observation term is

− ln p (ykS+K :kS+L|xkS = x) ∝ 1

2

kS+L∑
l=kS+K

‖yl −H ◦Ml←kS (x)‖2
R−1 .

(4)

• If the operators H,M are non-linear the background (bg) term

− ln p
(
xkS |y(k−1)S+L:K

)
, (5)

is complex.

• Thus it has to be approximated, this approximation determines our

algorithm.
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Basic algorithms

The 4D-Var2

• The 4D-Var background approximation is

− ln p
(
xkS = x|y(k−1)S+L:K

)
∝ 1

2

∥∥xbkS − x∥∥2B−1 , (6)

where
I x

b

kS ≡MkS←(k−1)S

(
x
a

(k−1)S

)
is the bg mean and xa(k−1)S is the last

cycle analysis,
I B is a constant bg error covariance matrix.

• It is a Gaussian background approximation, only the �rst moment is

tracked.

2E. Blayo, M. Bocquet, E. Cosme, and L.F. Cugliandolo. Advanced Data Assimilation

for Geosciences.

Lecture Notes of the Les Houches School of Physics: Special Issue, June 2012. 2014
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Basic algorithms

The IEnKS3

• The IEnKS background approximation in the ensemble space is

− ln p
(
xkS = x̄bkS + Xb

kSw|y(k−1)S+L:K

)
∝ 1

2
‖w‖2 , (7)

where
I x̄

b

kS ≡ E
b

kS
1

n
is the bg ensemble mean,

I X
b

kS ≡ 1√
n−1

(
E
b

kS − x̄bkS1T
)
is the bg ensemble normalized anomalies,

I E
b

kS ≡MkS←(k−1)S

(
E
a

(k−1)S

)
is the bg ensemble and Ea(k−1)S is the

last cycle analyzed ensemble.

• It is a Gaussian background approximation, the two �rst moments are

tracked. So it is (quite) exact when the operators H,M are linear.

3M. Bocquet and P. Sakov. An iterative ensemble kalman smoother.

Quarterly Journal of the Royal Meteorological Society, 140:1521�1535, 2014
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Performance of the assimilation

Empirical performance

• The smoothing RMSE at cycle k with lag L− l is de�ned by

RMSEkS+l ≡
∥∥xkS+l − xakS+l

∥∥ . (8)

• It's a random variable. In our numerical experiments the RMSE is

averaged over cycles:

aRMSEl ≡
1

N

N−1∑
k=0

∥∥xkS+l − xakS+l

∥∥ . (9)

• It measures the long term impact of cycling on the assimilation

performance4.

4The aRMSE convergence depends on ergodic properties which are beyond the scope

of this presentation.
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Performance of the assimilation

Theoretical performance

• The former quantity is di�cult to exploit analytically. In theoretical

developments we prefer the expected MSE

eMSEkS+l ≡ E
[∥∥xkS+l − xakS+l

∥∥2] . (10)

• Its asymptotic limit measures the long term impact of cycling on the

assimilation performance

eMSE∞+l ≡ lim
k→∞

eMSEkS+l . (11)

• In the following, simplifying assumptions will be made to express this

limit.
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Impact of the cycling on the performance Theoretical performance: linear diagonal autonomous model
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Impact of the cycling on the performance Theoretical performance: linear diagonal autonomous model

Simplifying assumptions

• The state space dimension is m = 2.

• H = B = R = I2.

• Mi←j = Mi−j =

(
αi−j
1 0

0 αi−j
2

)
I |α1| > 1 to have an unstable direction,
I |α2| < 1 to have a stable direction.

• The IEnKS becomes a Kalman smoother (no sampling errors).
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Impact of the cycling on the performance Theoretical performance: linear diagonal autonomous model

Performance expression

The 4D-Var and IEnKS asymptotic eMSE is expressible

1 2 3 4 5
L 4D-var, S IEnKS
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Figure: IEnKS, 4D-Var asymptotic �ltering eMSE as a function of S , L

• The 4D-Var asymptotic �ltering eMSE is constant with L and

decreases with S .

• The IEnKS asymptotic �ltering eMSE is constant with L, S .
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Impact of the cycling on the performance Theoretical performance: linear diagonal autonomous model

Interpretations

• The error forecast in �ltering eMSE
compensates performance gain with
remote observations

I Few dependancy with L.

• The IEnKS Gaussian background
approximation is exact.

I No loss of information during the
propagation, thus each S con�guration
is equivalent.

• The 4D-Var Gaussian background
approximation is not exact.

I There is a loss of information during the
propagation.

I The greater S the lesser the assimilation
relies on bg approximations so it is more
performant.

Assimilating 100 observations

• S=1 requires 100 cycles.

• S=10 requires 10 cycles.

• S=100 requires 1 cycle.
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Outline

1 Context and outline

2 Basic algorithms

3 Performance of the assimilation

4 Impact of the cycling on the performance

Theoretical performance: linear diagonal autonomous model

Empirical performance with a chaotic model

5 Quasi static algorithms

6 Numerical experiments

A. Fillion et al. Quasi static EnVar 12th EnKF meeting 19 / 34



Impact of the cycling on the performance Empirical performance with a chaotic model

aRMSE with L95
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Figure: IEnKS �ltering RMSE as a function of S (L = S) averaged over 5× 105

cycles with the 40 variable Lorenz'95 model. The ensemble contains 20 members
(logarithmic scale).

• The aRMSE decreases until S = 15 then it increases.
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Impact of the cycling on the performance Empirical performance with a chaotic model

Interpretation: S < 15

• The model is now non-linear, Gaussianity is lost, the IEnKS
background approximation is not exact anymore.

I Analogy with the 4DVar.
I There is a loss of information during the propagation.
I The greater S the lesser the assimilation relies on bg approximations so

it is more performant.

• To understand the case S > 15, let's have a look at the IEnKS

analysis.
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Impact of the cycling on the performance Empirical performance with a chaotic model

IEnKS analysis

• The IEnKS cost function in the ensemble space is

J (w) =
1

2
‖w‖2 +

1

2

L∑
l=K

∥∥yl −H ◦Ml :0
(
x̄b + Xbw

)∥∥2
R−1 , (12)

where x̄b = Eb 1n
n

is the bg ensemble mean and Xb = Eb−x̄b1T
n√

n−1 is the

bg normalized anomaly.
• It's minimization relies on a Gauss-Newton algorithm which is a

non-global method.

0 12

3

4
0

1

2
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Cost functions
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Figure: IEnKS cost functions in one direction of the ensemble space with
Lorenz'95 model.



Impact of the cycling on the performance Empirical performance with a chaotic model

The need for QS minimizations

• The bigger L is, the narrower the cost function global minimum basin

of attraction is.

• If the Gauss-Newton starting point x̄b falls outside of this basin of

attraction, the analysis will be deteriorated.

• Quasi-static minimizations consists in multiple minimizations of cost
functions with increasing L.

I Each minimum becomes the next minimization starting point.

• On the previous �gure it corresponds to minimizing the cost functions

in diagonal.
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The IEnKS-QS
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Figure: The analysis of the IEnKS-QS



Quasi static algorithms

Defaults

• Repeating the GN minimizations is numerically costly.

• Precision on intermediate minimums is not necessary, just imports to

be in the next minimum attraction basin.

• One can limit the number of intermediate GN iterations.
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The IEnKS-QC
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Figure: The analysis of the IEnKS-QC (Quasi Convergent)



Numerical experiments

Outline

1 Context and outline

2 Basic algorithms

3 Performance of the assimilation

4 Impact of the cycling on the performance

Theoretical performance: linear diagonal autonomous model

Empirical performance with a chaotic model

5 Quasi static algorithms

6 Numerical experiments

A. Fillion et al. Quasi static EnVar 12th EnKF meeting 29 / 34



aRMSE as function of S,L
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Figure: IEnKS and IEnKS-QS (nQ = S) �ltering aRMSE as a function of S , L
with Lorenz' 63 and Lorenz' 95 models.



IEnKS-QS vs IEnKS
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Figure: IEnKS-QS (nQ = S , L = S), IEnKS (L = S) smoothing, �ltering aRMSE
and number of ensemble propagations as a function of S with Lorenz'63 / 95
models (logarithmic scale).



IEnKS-QS vs IEnKS-QC
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Figure: IEnKS-QS and IEnKS-QC (S = L = 50) smoothing, �ltering aRMSE and
number of ensemble propagations as a function of nQ with Lorenz'63 / 95 models
(logarithmic scale).



Numerical experiments

Conclusions

• The 4D-Var and IEnKS performance increase with S the DAW number
of observations.

I Because the assimilation relies less on the Gaussian background
approximation.

• However, with a chaotic model, the cost function global minimum
basin of attraction shrinks as S increases.

I It causes Gauss-Newton to miss the global minimum, which
deteriorates the analysis performance.

• QS minimizations avoid this problem
I It brings the minimization starting point closer to the global

minimimum as its basin of attraction shrinks.
I But repeating the minimizations is costly.

• QC minimizations avoid this problem
I The Gauss-Newton multiple increments unavoidable to minimize a

non-quadratic cost function are reported in time.
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Numerical experiments

For further reading

Thanks for your attention !

Paper in preparation : A. Fillion, M. Bocquet, and S. Gratton. Quasi static

ensemble variational data assimilation.

Nonlinear Processes in Geophysics, 2017

E. Blayo, M. Bocquet, E. Cosme, and L.F. Cugliandolo. Advanced Data

Assimilation for Geosciences. Lecture Notes of the Les Houches School

of Physics: Special Issue, June 2012. 2014.

M. Bocquet and P. Sakov. An iterative ensemble kalman smoother.

Quarterly Journal of the Royal Meteorological Society, 140:1521�1535,

2014.

A. Fillion, M. Bocquet, and S. Gratton. Quasi static ensemble variational

data assimilation. Nonlinear Processes in Geophysics, 2017.

C. Pires, R. Vautard, and O. Talagrand. On extending the limits of

variational assimilation in nonlinear chaotic systems. Tellus A, 48:

96�121, 1996.
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