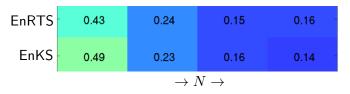
On the ensemble Rauch-Tung-Striebel smoother (EnRTS) and its equivalence to the ensemble Kalman smoother (EnKS)

> Patrick Nima Raanes patrick.n.raanes@gmail.com

11th EnKF workshop, Ulvik, June 19, 2016

Benchmarks (from 2013 workshop):

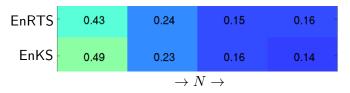


Emmanuel Cosme, Jacques Verron, Pierre Brasseur, Jacques Blum, and Didier Auroux. Smoothing problems in a Bayesian framework and their linear Gaussian solutions. Monthly Weather Review, 140(2):683-695, 2012.

Marco Luca Flavio Frei. *Ensemble Kalman Filtering and Generalizations.* PhD thesis, ETH Zurich, Dept. of Mathematics, 2013.

Matthias Katzfuss, Jonathan R. Stroud, and Christopher K. Wikle. *Understanding the ensemble Kalman filter.* The American Statistician, **2016**.

Benchmarks (from 2013 workshop):



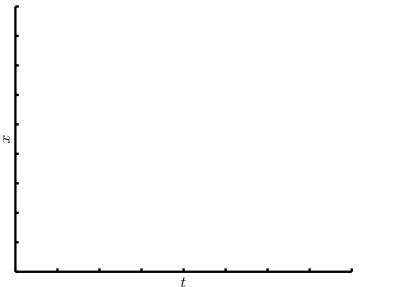
Emmanuel Cosme, Jacques Verron, Pierre Brasseur, Jacques Blum, and Didier Auroux. Smoothing problems in a Bayesian framework and their linear Gaussian solutions. Monthly Weather Review, 140(2):683-695, **2012**.

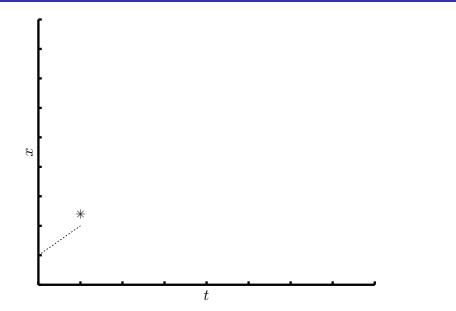
Marco Luca Flavio Frei. Ensemble Kalman Filtering and Generalizations. PhD thesis, ETH Zurich, Dept. of Mathematics, **2013**.

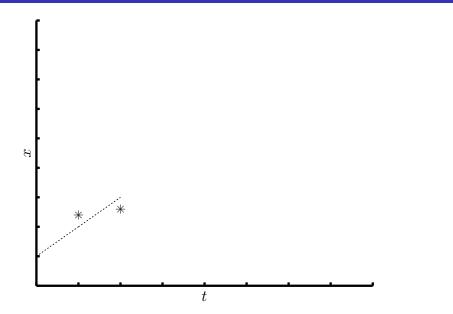
Matthias Katzfuss, Jonathan R. Stroud, and Christopher K. Wikle. *Understanding the ensemble Kalman filter.* The American Statistician, **2016**. On the ensemble Rauch-Tung-Striebel smoother (EnRTS) and its equivalence to the ensemble Kalman smoother (EnKS)

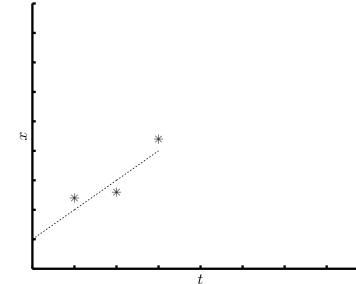
> Patrick Nima Raanes patrick.n.raanes@gmail.com

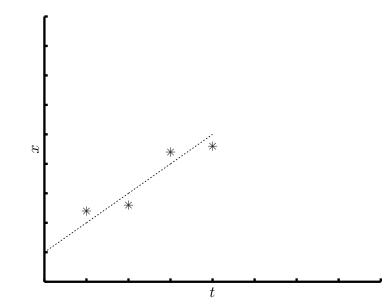
11th EnKF workshop, Ulvik, June 19, 2016

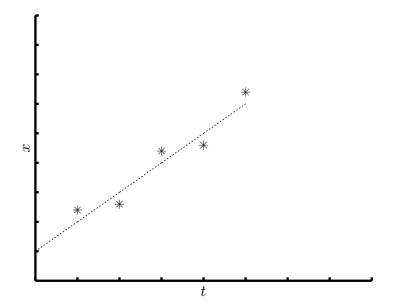


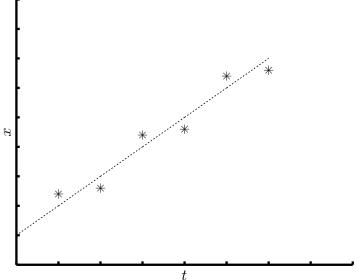


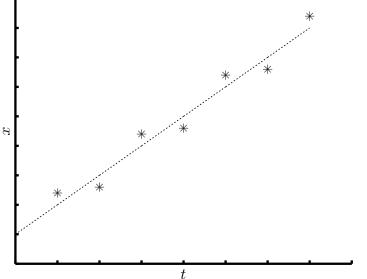


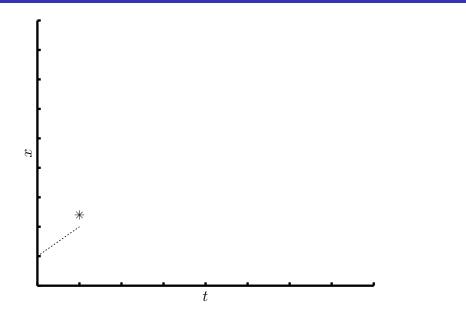


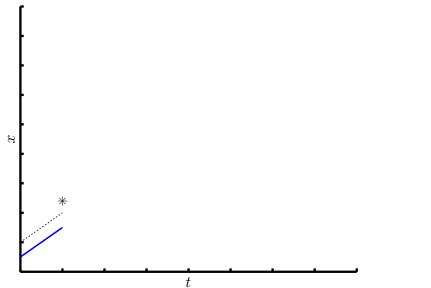


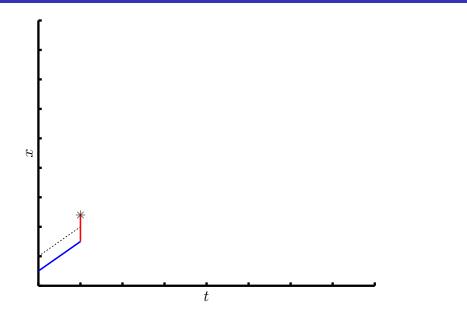


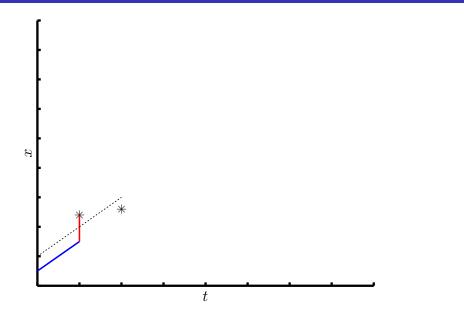


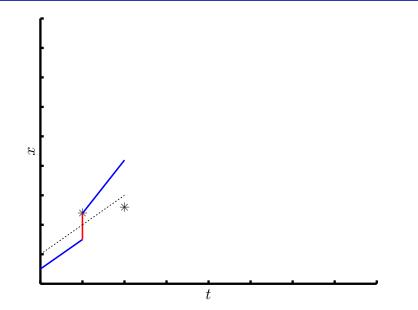


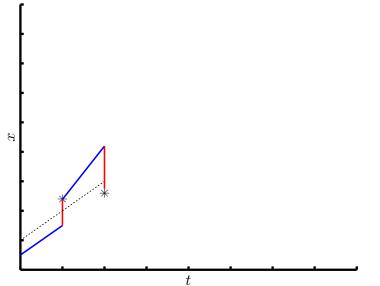


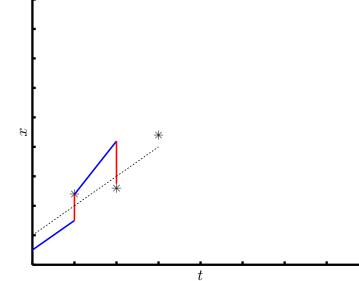


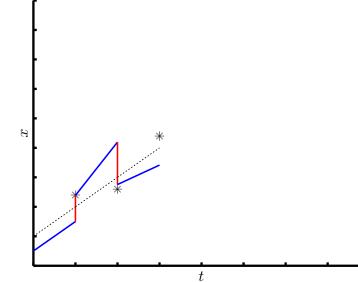


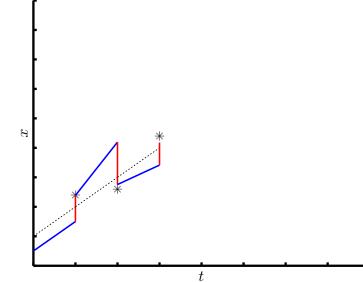


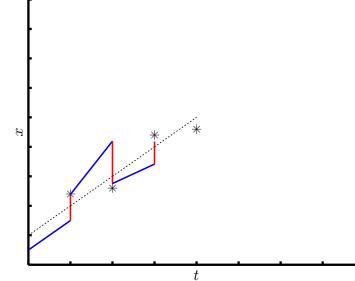


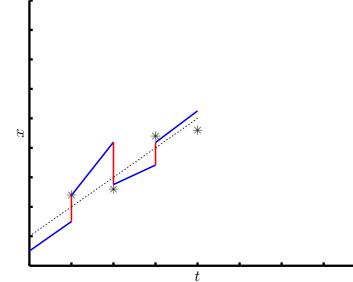


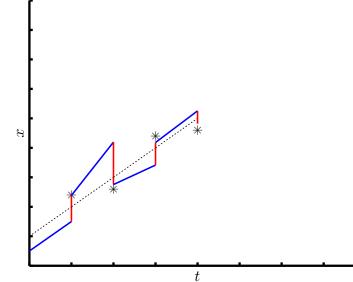


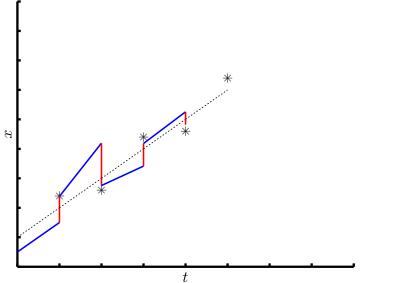


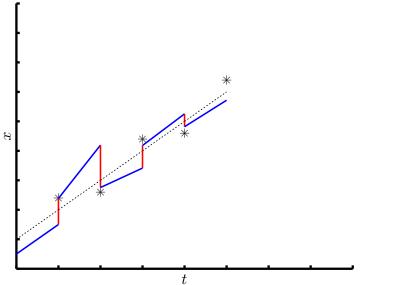


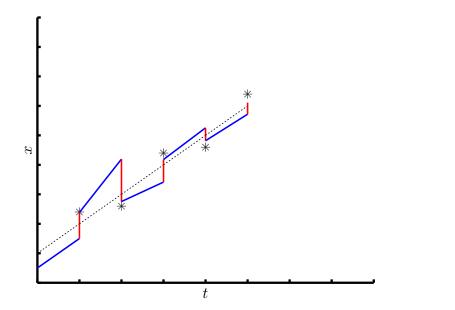


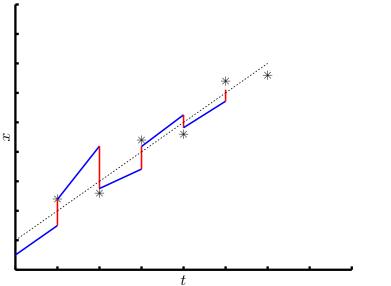


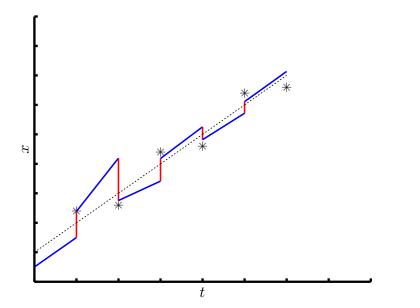


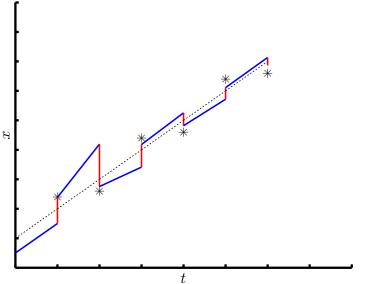


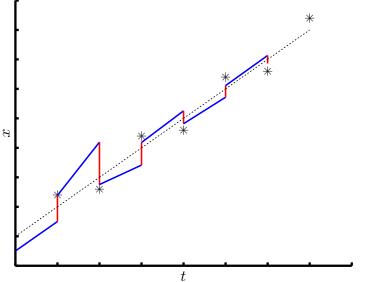


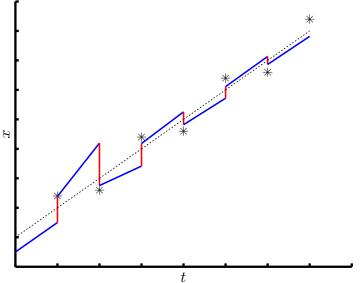


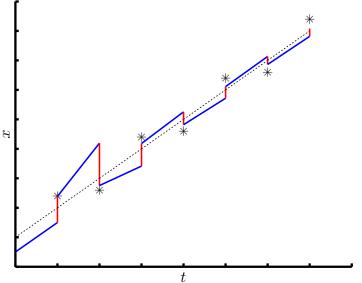








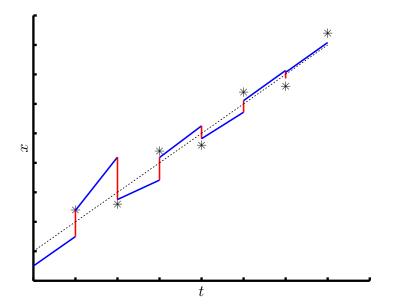




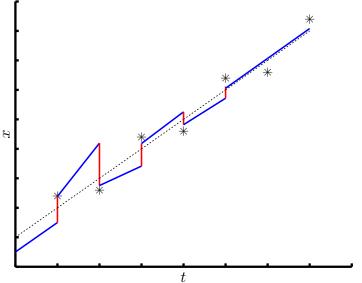
Smoothing

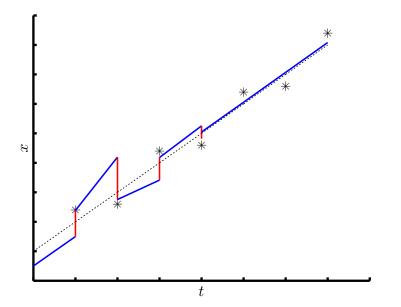
- Reanalysis
- Iterative filtering

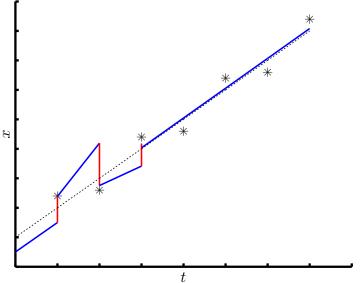
EnRTS

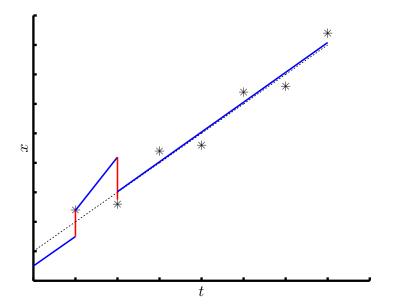


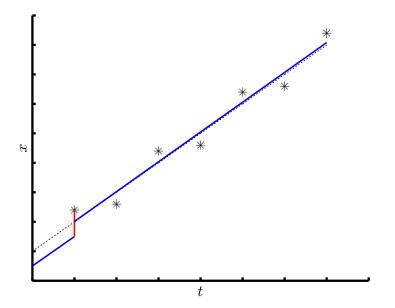
EnRTS

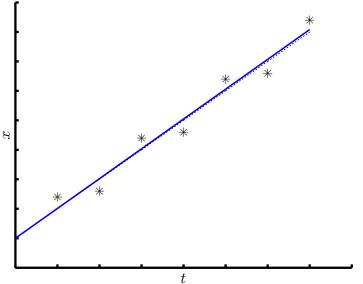


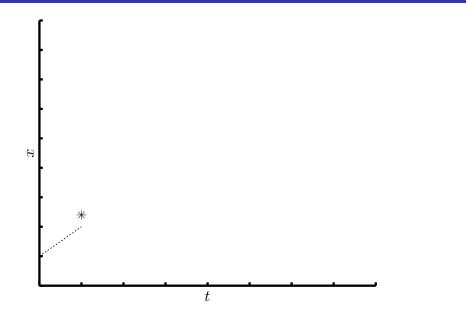


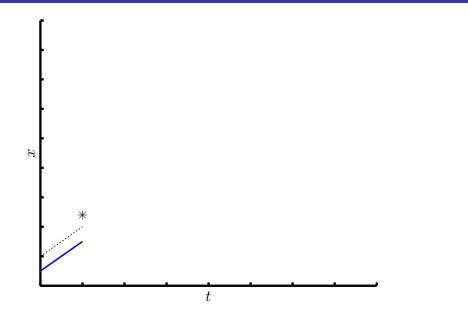


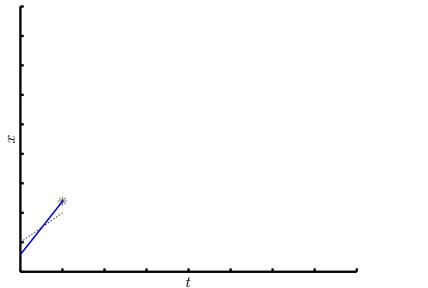


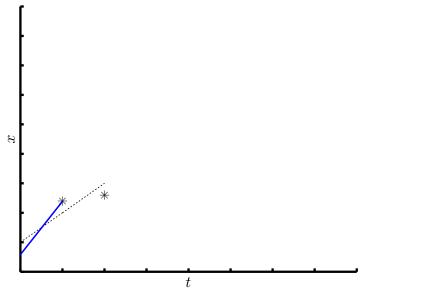


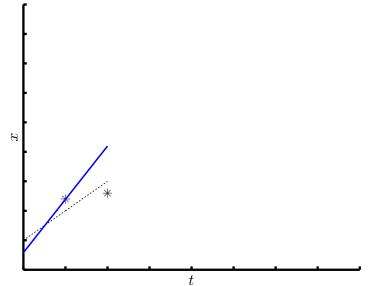


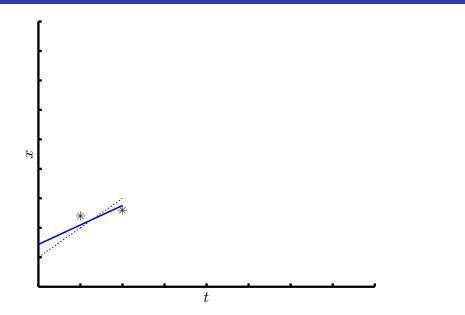


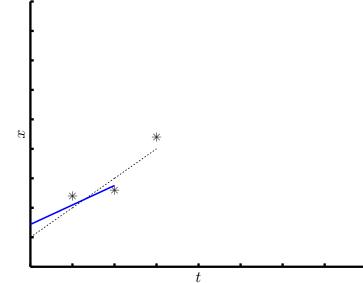


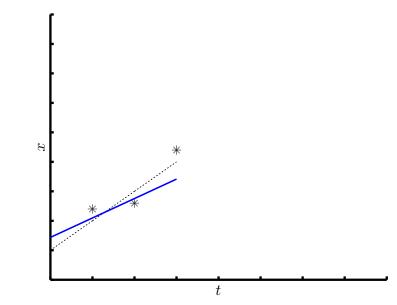


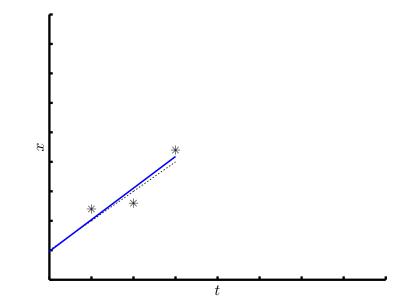


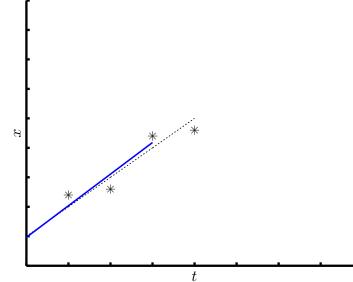


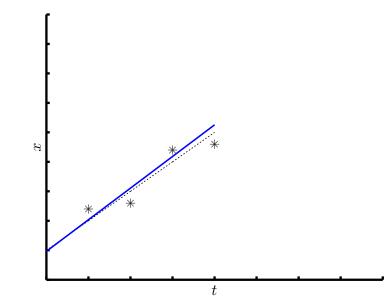


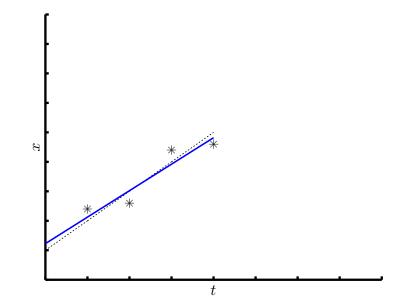


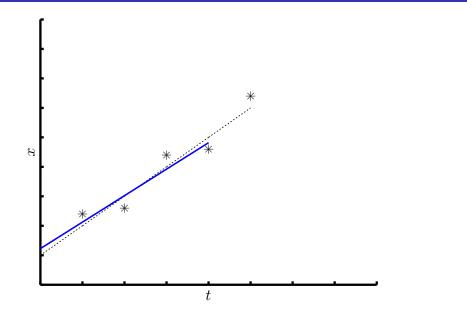


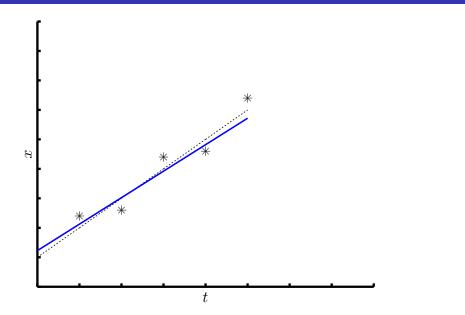


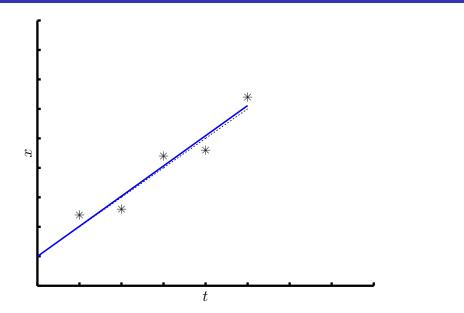


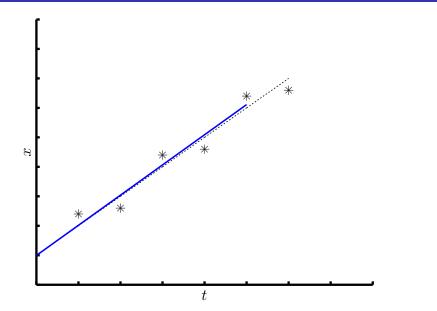


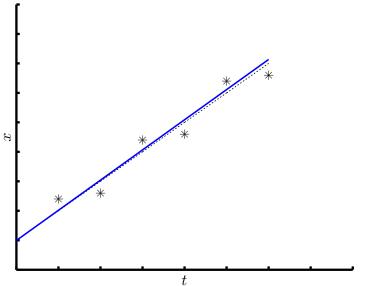


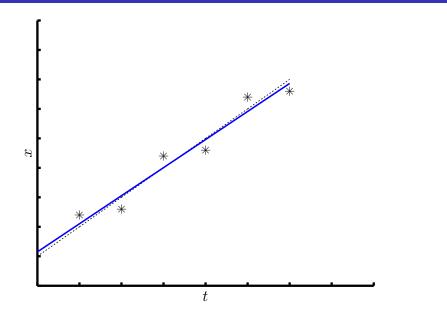


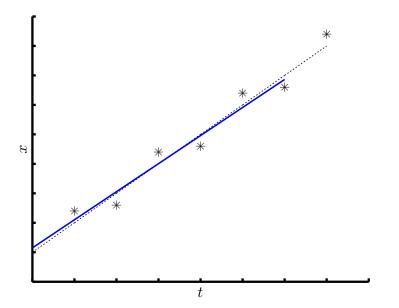


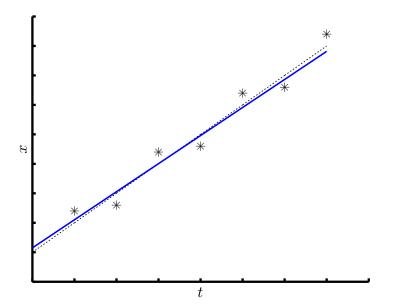


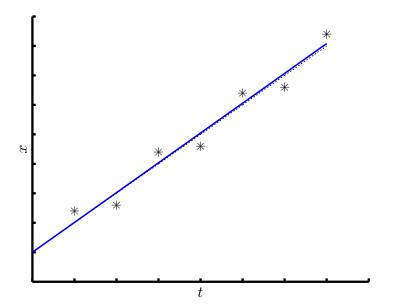




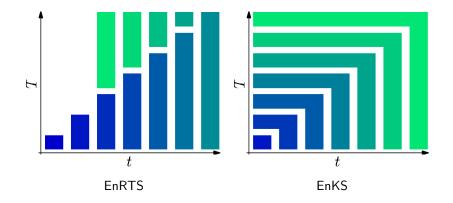








Visualization



Algorithms

EnRTS

With
$$\mathbf{\bar{J}}_t = \mathbf{A}_{t|t} \mathbf{A}_{t+1|t}^+$$
,
 $\mathbf{E}_{t|T} = \mathbf{E}_{t|t} + \mathbf{\bar{J}}_t \left[\mathbf{E}_{t+1|T} - \mathbf{E}_{t+1|t} \right]$,

for decreasing t.

EnKS

With \mathbf{X}^5 from Evensen'2003

$$\mathbf{E}_{t|T}^{\mathsf{KS}} = \mathbf{E}_{t|T-1}^{\mathsf{KS}} \mathbf{X}_T^5$$
.

for increasing T.

Algorithms

EnRTS

With
$$\overline{\mathbf{J}}_t = \mathbf{A}_{t|t} \mathbf{A}_{t+1|t}^+$$
,
 $\mathbf{E}_{t|T} = \mathbf{E}_{t|t} + \overline{\mathbf{J}}_t \left[\mathbf{E}_{t+1|T} - \mathbf{E}_{t+1|t} \right]$,

for decreasing t.

EnKS

With \mathbf{X}^5 from Evensen'2003

$$\mathbf{E}_{t|T}^{\mathsf{KS}} = \mathbf{E}_{t|T-1}^{\mathsf{KS}} \mathbf{X}_T^5$$
.

for increasing T.

Proof

_emma: The EnRTS on-line

Unconditionally,

$$\mathbf{E}_{t|T} = \mathbf{E}_{t|t} + \sum_{k=t+1}^{T} \left(\prod_{\tau=t}^{k-1} \bar{\mathbf{J}}_{\tau} \right) \left[\mathbf{E}_{k|k} - \mathbf{E}_{k|k-1} \right]$$

emma: ${ m J} au$ recursively

Providing $N \leq m$ (or linear dynamics),

$$\prod_{\tau=t}^{T-1} \bar{\mathbf{J}}_{\tau} = \mathbf{A}_{t|T-1} \mathbf{A}_{T|T-1}^+.$$

Theorem: Equivalence

$$\mathbf{E}_{t|T} = \mathbf{E}_{t|T}^{\mathsf{KS}}$$
 .

Proof

Lemma: The EnRTS on-line

Unconditionally,

$$\mathbf{E}_{t|T} = \mathbf{E}_{t|t} + \sum_{k=t+1}^{T} \left(\prod_{\tau=t}^{k-1} \bar{\mathbf{J}}_{\tau} \right) \left[\mathbf{E}_{k|k} - \mathbf{E}_{k|k-1} \right]$$

emma: $\mathbf{J}{ au}$ recursively

Providing $N \leq m$ (or linear dynamics),

$$\prod_{\tau=t}^{T-1} \bar{\mathbf{J}}_{\tau} = \mathbf{A}_{t|T-1} \mathbf{A}_{T|T-1}^+.$$

Theorem: Equivalence

$$\mathbf{E}_{t|T} = \mathbf{E}_{t|T}^{\mathsf{KS}}$$
 .

Proof

Lemma: The EnRTS on-line

Unconditionally,

$$\mathbf{E}_{t|T} = \mathbf{E}_{t|t} + \sum_{k=t+1}^{T} \left(\prod_{\tau=t}^{k-1} \bar{\mathbf{J}}_{\tau} \right) \left[\mathbf{E}_{k|k} - \mathbf{E}_{k|k-1} \right]$$

Lemma: $\mathbf{\bar{J}}_{ au}$ recursively

Providing $N \leq m$ (or linear dynamics),

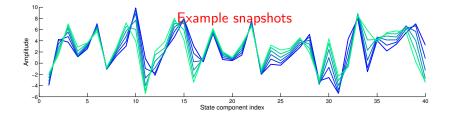
$$\prod_{\tau=t}^{T-1} \bar{\mathbf{J}}_{\tau} = \mathbf{A}_{t|T-1} \mathbf{A}_{T|T-1}^+$$

Theorem: Equivalence

$$\mathbf{E}_{t|T} = \mathbf{E}_{t|T}^{\mathsf{KS}}$$
 .

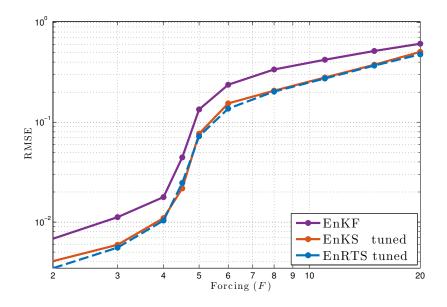
Lorenz-96 system

Integrated with RK4:
$$\frac{dx_i}{dt} = (x_{i+1} - x_{i-2}) x_{i-1} - x_i + F$$



$$\mathsf{RMSE} = \frac{1}{T} \sum_{t=1}^{T} \sqrt{\frac{1}{m} \|\bar{\boldsymbol{x}}_t - \boldsymbol{x}_t\|_2^2} \,.$$

In practice



Both smoothers can be formulated on- and off- line

- If N < m: equivalence
- Equivalence broken by ad-hoc tuning
- But capability remains equal

- Both smoothers can be formulated on- and off- line
- If N < m: equivalence
- Equivalence broken by ad-hoc tuning
- But capability remains equal

- Both smoothers can be formulated on- and off- line
- If N < m: equivalence
- Equivalence broken by ad-hoc tuning
- But capability remains equal

- Both smoothers can be formulated on- and off- line
- If N < m: equivalence
- Equivalence broken by ad-hoc tuning
- But capability remains equal

Patrick Nima Raanes.

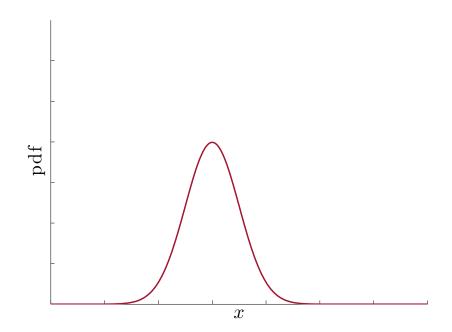
On the ensemble Rauch-Tung-Striebel smoother and its equivalence to the ensemble Kalman smoother. Quarterly Journal of the Royal Meteorological Society, **2015**.

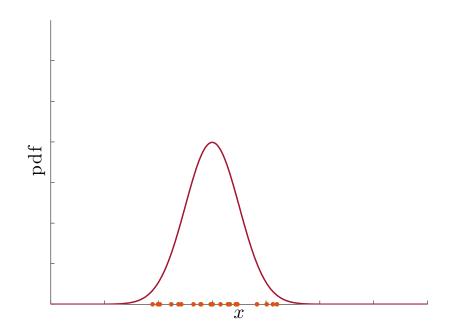
The Rauch-Tung-Striebel (RTS) smoother is a linear-Gaussian smoothing algorithm that is popular in the engineering community. This note is a study of its ensemble formulation (EnRTS). An on-line expression is derived and discussed. In particular, it is used to show that the EnRTS is equivalent to the ensemble Kalman smoother (EnKS), even in the nonlinear, non-Gaussian case. The theory is revisited under practical considerations and equability is illustrated by numerical experiments, even though equivalence is broken by inflation and localisation.

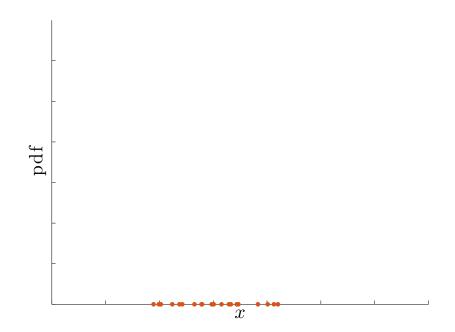
The EnKF-N and inflation (poster teaser)

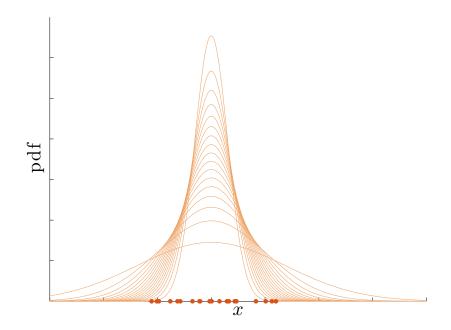
Patrick Nima Raanes Marc Bocquet

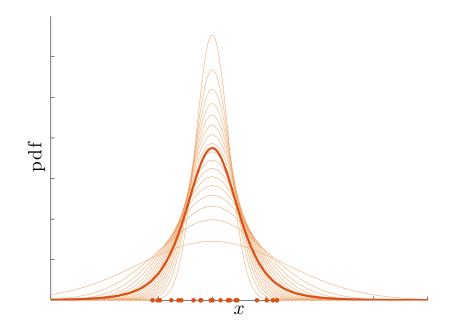
11th EnKF workshop, Ulvik, June 19, 2016

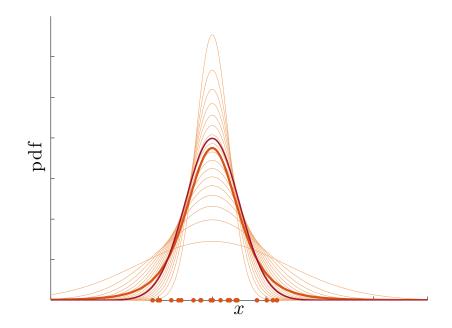


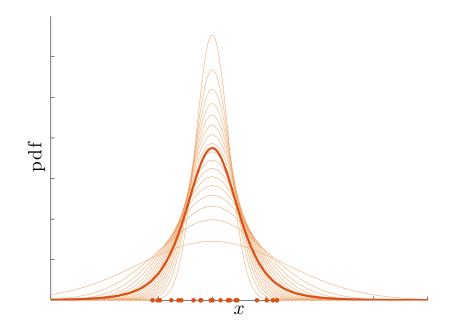


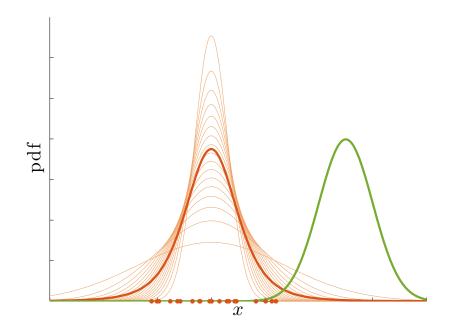


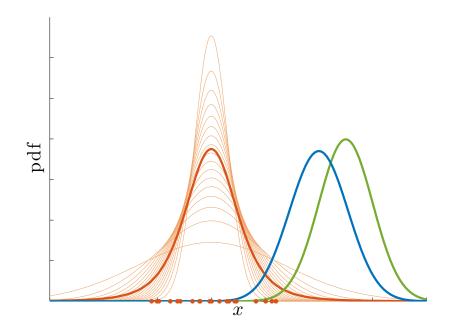


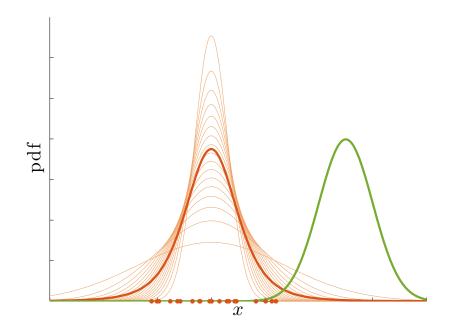


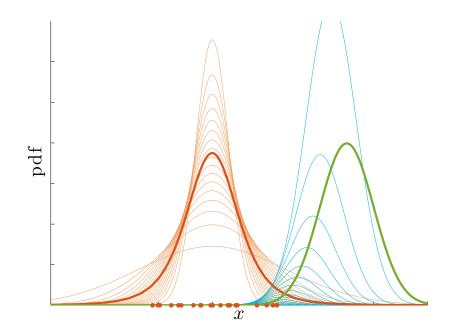


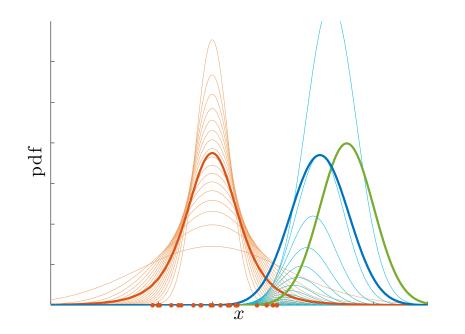


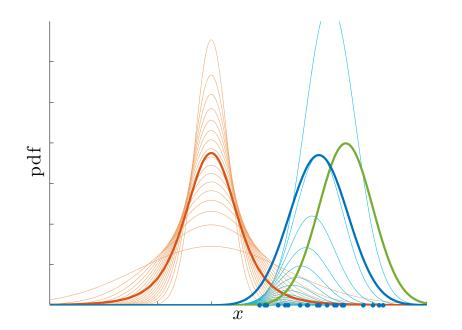












- Posterior variance depends on innovation
 - Better than "unbiased"
 - Sequential feedback
- Careful about parameterization and implicit assumptions
- Dual perspective: scale mixture
 - Adaptive inflation
 - Good performance, no additional cost
 - · Future: estimate model error inflation
- Primal perspective: Student t prior
 - More general.
 - Euture: include localization

- Posterior variance depends on innovation
 - Better than "unbiased'
 - Sequential feedback
- Careful about parameterization and implicit assumptions
- Dual perspective: scale mixture
 - Adaptive inflation
 - Good performance, no additional cost
 - Future: estimate model error inflation
- Primal perspective: Student t prior
 - More general.
 - Future: include localization

- Posterior variance depends on innovation
 - Better than "unbiased"
 - Sequential feedback
- Careful about parameterization and implicit assumptions
- Dual perspective: scale mixture
 - Adaptive inflation.
 - Good performance, no additional cost.
 - Buture: estimate model error inflation
- Primal perspective: Student t prior
 - More general
 - . Euture: include localization

- Posterior variance depends on innovation
 - Better than "unbiased"
 - Sequential feedback
- Careful about parameterization and implicit assumptions
- Dual perspective: scale mixture
 - Adaptive inflation
 - Good performance, no additional cost
 - Future: estimate model error inflation
- Primal perspective: Student t prior
 - More general.
 - . Euture: include localization

• Less dogmatic assumptions \implies EnKF-N

- Posterior variance depends on innovation
 - Better than "unbiased"
 - Sequential feedback
- Careful about parameterization and implicit assumptions

Dual perspective: scale mixture

Adaptive inflation

Good performance, no additional cost.

» Future: estimate model error inflation

Primal perspective: Student t prior

More general

Future: include localization

- Posterior variance depends on innovation
 - Better than "unbiased"
 - Sequential feedback
- Careful about parameterization and implicit assumptions
- Dual perspective: scale mixture
 - Adaptive inflation
 - Good performance, no additional cost
 - Future: estimate model error inflation
- Primal perspective: Student t prior
 - More general
 - Future: include localization

- Posterior variance depends on innovation
 - Better than "unbiased"
 - Sequential feedback
- Careful about parameterization and implicit assumptions
- Dual perspective: scale mixture
 - Adaptive inflation
 - Good performance, no additional cost
 - Future: estimate model error inflation
- Primal perspective: Student t prior
 - More general
 - Future: include localization

- Posterior variance depends on innovation
 - Better than "unbiased"
 - Sequential feedback
- Careful about parameterization and implicit assumptions
- Dual perspective: scale mixture
 - Adaptive inflation
 - Good performance, no additional cost
 - Future: estimate model error inflation
- Primal perspective: Student t prior
 - More general
 - Future: include localization

• Less dogmatic assumptions \implies EnKF-N

- Posterior variance depends on innovation
 - Better than "unbiased"
 - Sequential feedback
- Careful about parameterization and implicit assumptions
- Dual perspective: scale mixture
 - Adaptive inflation
 - Good performance, no additional cost
 - Future: estimate model error inflation

Primal perspective: Student t prior
In More concrete
In Forume include localization

• Less dogmatic assumptions \implies EnKF-N

- Posterior variance depends on innovation
 - Better than "unbiased"
 - Sequential feedback
- Careful about parameterization and implicit assumptions
- Dual perspective: scale mixture
 - Adaptive inflation
 - Good performance, no additional cost
 - Future: estimate model error inflation
- Primal perspective: Student t prior

More general

Future: include localization

• Less dogmatic assumptions \implies EnKF-N

- Posterior variance depends on innovation
 - Better than "unbiased"
 - Sequential feedback
- Careful about parameterization and implicit assumptions
- Dual perspective: scale mixture
 - Adaptive inflation
 - Good performance, no additional cost
 - Future: estimate model error inflation
- Primal perspective: Student t prior
 - More general

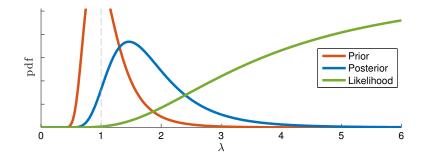
Future: include localization

- Posterior variance depends on innovation
 - Better than "unbiased"
 - Sequential feedback
- Careful about parameterization and implicit assumptions
- Dual perspective: scale mixture
 - Adaptive inflation
 - Good performance, no additional cost
 - Future: estimate model error inflation
- Primal perspective: Student t prior
 - More general
 - Future: include localization

Marc Bocquet, Patrick N. Raanes, and Alexis Hannart. Expanding the validity of the ensemble Kalman filter without the intrinsic need for inflation.

Nonlinear Processes in Geophysics, 22(6):645-662, 2015.

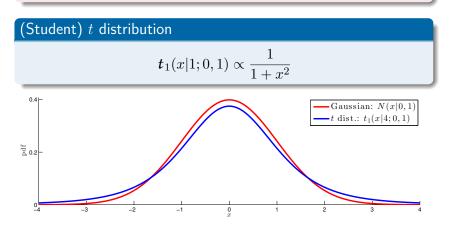
Appendix

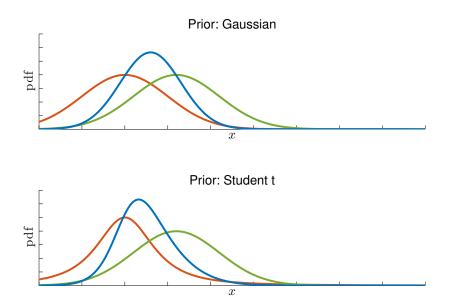


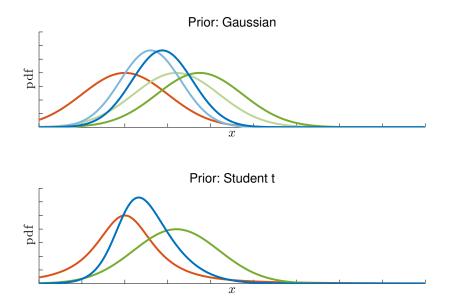
 $\begin{array}{ll} \mbox{Prior:} & p(\lambda^2 | \mathbf{E}) = \chi^{-2}(\lambda^2 | N - 1) \\ \mbox{Likelihood:} & p(\boldsymbol{y}, \boldsymbol{w}_\star | \mathbf{E}, \lambda^2) = \exp\left(-\frac{1}{2} \| \boldsymbol{\bar{\delta}} \|_{\mathbf{Y} \mathbf{Y}^\intercal/\zeta + \mathbf{R}}^2\right) \\ \mbox{Posterior:} & p(\boldsymbol{w}_\star, \zeta | \mathbf{E}, \boldsymbol{y}) = \exp\left(-\frac{1}{2} D(\zeta)\right) \end{array}$

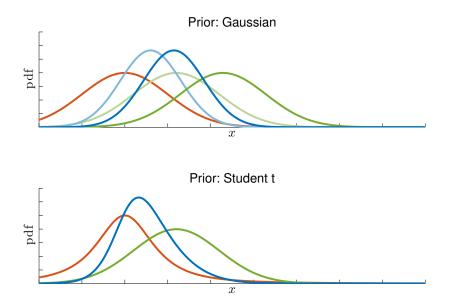
Gaussian distribution

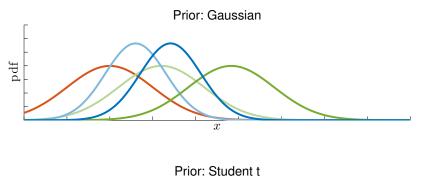
$$\mathcal{N}(x|0,1) \propto e^{-\frac{1}{2}x^2}$$

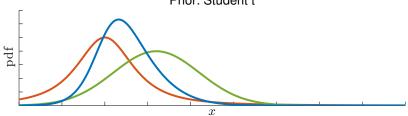


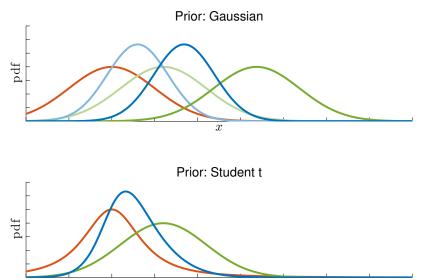




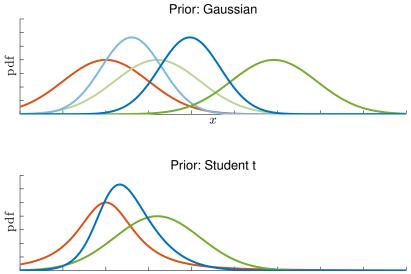




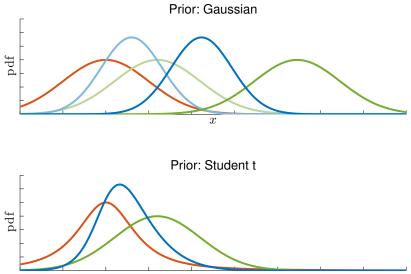




x



x



x

