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Reservoir Modeling

Teal South

Reservoir in the Gulf of Mexico
Monthly production rates of
oil, water and gas avalaible

Over the next few years, practicing reservoir engineers
will have to cope with a vast increase in data describing
field performance. This will come from operational deploy-
ment of time-lapse seismic and fully instrumented wells
providing real-time pressure and rate information.

The current approach to history matching of reservoir
models usually involves time-consuming adjustments of
simulator input parameters by an engineer. These adjust-
ments, based on the difference between the predictions of
the reservoir simulator and observed field production and
pressure data, can involve several man months of effort. 

Reservoir model history matches are almost always
nonunique—more than one combination of reservoir
model input parameters (porosity, permeability, trans-
missibility barriers, etc.) will match observed production
data.

Recently, commercial aids to history matching have
been developed. These programs compute gradients of
reservoir models response with respect to model input
parameters. The codes have the ability to automatically
generate a history matched model but do not guarantee
that it is the correct “global optimum” solution.

Generating multiple history matched models. Our
approach is to develop multiple history-matched models
and use the range of possible models to quantify the uncer-
tainty in future performance. By generating many possi-
ble solutions, the task of updating the history match when
new data come in should be reduced to selecting the mod-
els that match the new data.

The approach we use is a stochastic sampling program
originally developed for earthquake seismology. The algo-
rithm, known as the Neighborhood Algorithm, uses infor-
mation obtained from previous runs to bias the sampling
of model parameters to regions of parameter space where
a good fit is likely. In this way it attempts to overcome a
main concern of stochastic sampling—poor convergence.
A full description of the algorithm is given by Sambridge
(Geophysical Journal International, 1999).

Quantitative probability estimates using a stochastic
sampling algorithm depend critically on accurate estima-
tion of the likelihood. This depends on both errors in the
data and errors in the modeling.

Errors in time-lapse signal can be due to survey repeata-
bility, for example variations in source-receiver positions,
shot-to-shot repeatability, ambient noise such as wave
action or tide-induced noise in marine seismic, or differ-
ent processing decisions and interpretations such as picks
of individual horizons.

Generally, cross-equalization is carried out to remove
as many of these differences as possible. Filters are designed
to minimize differences in regions assumed to have no
changes due to production and to warp the data volumes
to align amplitudes or attribute distributions on horizons.

The two principal errors in reservoir simulation are
numerical diffusion, which is an artificial smearing of
sharp fronts, and cell-aspect ratio errors, where the results
of a simulation are sensitive to the ratio of cell height to
cell thickness. Numerical diffusion means that it is impos-

sible to resolve a front over fewer than three cells, and gen-
erally fronts might be smeared over four or five cells and
perhaps more. For a relatively coarsely gridded model, this
raises the question of how quantitative we can be in com-
paring seismic with simulation.

Application to Teal South. Teal South is a reservoir in the
Gulf of Mexico that has been the subject of a number of
time-lapse surveys managed through Energy Resources
Clearing House (ERCH) in Houston. Many institutions
have been using the data to test and develop processing
techniques for time-lapse seismic. At Heriot-Watt, we have
used Teal South as one example data set in the Edinburgh
Time-Lapse Project, which focuses on developing seismic
processing and interpretation methods, and the
Uncertainty Project, a reservoir engineering project to
develop prediction methods for uncertainty quantifica-
tion.

Figure 1 shows the 4500-ft sand, which is bounded on
three sides by faults and closed by dip to the north. A sin-
gle well penetrates the sand, which is initially overpres-
sured at 3096 psi. Monthly production rates of oil, water,
and gas are available; there are only two pressure data
points—the initial pressure of 3096 psi and a measure-
ment of 2458 psi after 570 days of production. Pennington
(TLE, 2001) analyzed some time-lapse results and cross-
equalization issues were described by Druzhinin et al.
(SEG 2001 Expanded Abstracts).

Data available to aid the history matching study
included a depth-converted top-structure map of the 4500-
ft sand, pvt data, and estimates of reservoir thickness. We
had no access to relative permeability data.

We set up a history matching process using produc-
tion data only. Key unknowns in our history matching
procedure were horizontal and vertical permeabilities,
water-oil and gas-oil relative permeability, rock com-
pressibility, water-oil contact, and aquifer strength.

We created a corner point grid using FloGrid. Initially
we set up a model with three layers and sampled for rel-
ative permeabilities, water-oil contact, and constant val-
ues of horizontal and vertical permeability. We used this
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Multiple history-matched models for Teal
South
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Figure 1. Teal South 4500-ft sand structure map and sim-
ulation grid. Source: Christie et al.

Model

Five geological layers with uniform properties
9 unknown parameters (porosity, horizontal permeability multipliers for each
layer, vertical to horizontal permeability ratio, rock compressibility, aquifer
strength)
Matching to the field oil production rate
Eclipse used to simulate the flow in porous media
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Reservoir Modeling
Results (100 forward simulations)
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Figure: Misfit of the mean to the (noisy)
observational data, J=5, 20 iterations.
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Figure: Prediction of the mean
compared to the (noisy) observational
data, J=5, 20 iterations.
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Inverse Problem

Find the unknown data u ∈ X from noisy observations

y = G(u) + η with η ∼ N (0,Γ)

u ∈ X parameter vector / parameter function
G : X → Y forward response operator; X,Y separable Hilbert spaces
y result / observations
Evaluation of G expensive

Deterministic optimisation problem

min
u

1
2‖y − G(u)‖2 +R(u)

R regularisation term

Bayesian inverse problem

u, η, y random variables / fields

Prior µ0, posterior µy
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Bayesian Inverse Problem

Find the unknown data u ∈ X from noisy observations

y = G(u) + η

Bayes’ Theorem (A. M. Stuart 2010)

Assuming G ∈ C(X,Y ) and µ0(X) = 1, then the posterior measure µy on
u|y is absolutely continuous w.r. to the prior on u and

µy(du) = 1
Z

exp(−Φ(u))µ0(du)

with Φ : X 7→ R, Φ(u) = 1
2 |y − G(u)|2Γ and Z =

∫
exp(−Φ(u))µ0(du).
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Bayesian Inverse Problem

Find the unknown data u ∈ X from noisy observations

y = G(u) + η

Ensemble Kalman Filter

Fully Bayesian inversion is often too expensive.

EnKF is widely used.

Currently, very little analysis of the EnKF is available.

Aim: Build analysis of properties of EnKF for fixed ensemble size.
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Bayesian Inverse Problem

Find the unknown data u ∈ X from noisy observations

y = G(u) + η

Ensemble Kalman Filter
Optimisation viewpoint

Study of the properties of the EnKF as a regularisation technique for minimisation of the
least-squares misfit functional

Continuous time limit

Analysis of the properties of the differential equations

C. Schillings (UoW) EnKF for Inverse Problems EnKF WS - 21.6.2016 5 / 17



EnKF for Inverse Problems

Sequence of Interpolating Measures
For N ∈ N, h := 1/N , we define a sequence of measures µn � µ0, n = 1, . . . , N , which
evolve the prior µ0 into the posterior distribution µN = µy, by

µn+1(du) = Zn

Zn+1
exp(−hΦ(u))µn(du)⇔ µn+1 = Lnµn

with nonlinear operator Ln corresponding to application of Bayes’ theorem and
normalisation constant Zn =

∫
exp(−nhΦ(u))µ0(du) with Φ(u) = 1

2 |y − G(u)|2Γ.

Ensemble of Interacting Particles
Initial ensemble {u(j)

0 }
J
j=1 constructed by prior knowledge, u(j) ∼ µ0 iid for J <∞.

Linearisation of Ln and approximation of µn by a J-particle Dirac
measure leads to the EnKF method.
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EnKF for Inverse Problems
Update of the EnKF for Inverse Problems

u
(j)
n+1 = u(j)

n + Cupn+1(Cppn+1 + 1
h

Γ)−1(y(j)
n+1 − G(u(j)

n ))
with empirical covariances

Cup
n+1 = 1

J

∑J

j=1 u
(j)
n ⊗ G(u(j)

n )− un ⊗ G(un)

Cpp
n+1 = 1

J

∑J

j=1 G(u(j)
n )⊗ G(u(j)

n )− G(un)⊗ G(un),

mean un = 1
J

∑J

j=1 u
(j)
n , G(un) = 1

J

∑J

j=1 G(u(j)
n )

and observations y(j)
n+1 = y + η

(j)
n+1, η(j)

n+1 ∼ N(0, 1
h

Γ).

Properties of the EnKF for Inverse Problems e.g. [Iglesias, Law, Stuart 2013]

The ensemble parameter estimate lies in the linear span of the initial ensemble.
This linear span property implies that the accuracy of the EnKF estimate is
bounded from below by the best approximation in span{u(1)

0 , . . . , u
(J)
0 }.

In the linear case, the EnKF estimate converges in the limit J →∞ to the solution
of the regularised least-squares problem.
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Continuous Time Limit

Update of the Iterates

u
(j)
n+1 = u(j)

n + h Cupn+1
(
h Cppn+1 + Γ

)−1(y† − G(u(j)
n ))

+ h
1
2 Cupn+1

(
h Cppn+1 + Γ

)−1Γ
1
2 ζjn+1

with ζn+1 ∼ N (0, id).

Limiting SDE

Interpreting the iterate as u(j)
n ≈ u(j)(nh) gives

du(j) = CupΓ−1(y† − G(u(j))) dt+ CupΓ−
1
2 dW (j) ,

where W (1), . . . ,W (J) are pairwise independent cylindrical Wiener processes and y†

denotes the noisy observational data G(u†) + η† with η† ∼ N (0,Γ).
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Continuous Time Limit (Linear Case)

Assumption: Linear response operator G(u) = Au with A ∈ L(X,Y )

u
(j)
n+1 = u(j)

n + hC(un)A∗Γ−1(y(j)
n+1 −Au

(j)
n+1)

with C(un) = 1
J

∑J

j=1(u(j)
n − un)⊗ (u(j)

n − un) and un = 1
J

∑J

j=1 u
(j)
n .

Noise-free Case

Limiting SDE

du(j) = C(u)A∗Γ−1A(u† + η − u(j)) dt+ C(u)A∗Γ−
1
2 dW (j) ,

or equivalently,
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J
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j=1 u
(j)
n .

Noise-free Case

Limiting ODE

du(j) = C(u)A∗Γ−1A(u† − u(j)) dt ,

or equivalently, d
dtu

(j) = −C(u)DuΦ(u(j); y)

with potential Φ(u; y) = 1
2‖Γ

− 1
2 (y −Au)‖2.
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Long-time Behaviour (Linear Case)

(a) Global Existence of Solutions

(b) Ensemble Collapse

(c) Convergence of Residuals
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Long-time Behaviour (Linear Case)

(a) Global Existence of Solutions
Assume that y is the image of a truth u† ∈ X under A. Let u(j)(0) ∈ X for
j = 1, . . . , J and define X0 to be the linear span of the {u(j)(0)}J

j=1.

Then, the limiting ODE has a unique solution u(j)(·) ∈ C([0,∞);X0) for
j = 1, . . . , J.
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Quantities

e(j) = u(j) − u , r(j) = u(j) − u† ,

Elj = 〈Ae(l), Ae(j)〉Γ , Rlj = 〈Ar(l), Ar(j)〉Γ , Flj = 〈Ar(l), Ae(j)〉Γ .
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d
dt e

(j) = − 1
J

J∑
k=1

Ejkd
(k) ,

d
dt r

(j) = − 1
J

J∑
k=1

Fjkr
(k) , j = 1, . . . , J

d
dtE = − 2

J
E2 ,

d
dtR = − 2

J
FF> ,

d
dtF = − 2

J
FE

Global existence of E, R and F ⇒ global existence of r and e
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Long-time Behaviour (Linear Case)

(b) Ensemble Collapse
Assume that y is the image of a truth u† ∈ X under A. Let u(j)(0) ∈ X for
j = 1, . . . , J .
The solution of d

dtE = − 2
J
E2

with initial cond. E(0) = XΛ0X
∗, Λ0 = diag{λ(1)

0 , . . . , λ
(J)
0 }, X ∈ RJ×J orthogonal,

is given by E(t) = XΛ(t)X∗ .
Λ(t) satisfies the following decoupled ODE

dλ(j)

dt = − 2
J

(λ(j))2

with solution λ(j)(t) =
( 2
J t+ 1

λ
(j)
0

)−1, if λ(j)
0 6= 0, otherwise λ(j)(t) = 0.
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The rate of convergence of E and F is algebraic with a constant growing with
larger ensemble size J .
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Long-time Behaviour (Linear Case)

(c) Convergence of Residuals
Assume that y is the image of a truth u† ∈ X under A.Let Y ‖ denote the linear span of
the {Ae(j)(0)}J

j=1 and let Y ⊥ denote the orthogonal complement of Y ‖ in Y with
respect to the inner product 〈·, ·〉Γ and assume that the initial ensemble members are
chosen so that Y ‖ has the maximal dimension min{J − 1, dim(Y)}.

Then Ar(j)(t) may be decomposed uniquely as

Ar
(j)
‖ (t) +Ar

(j)
⊥ (t) with Ar(j)

‖ ∈ Y
‖ and Ar(j)

⊥ ∈ Y
⊥.

Furthermore Ar(j)
‖ (t)→ 0 as t→∞ and Ar(j)

⊥ (t) = Ar
(j)
⊥ (0) = Ar

(1)
⊥ .
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Furthermore Ar(j)
‖ (t)→ 0 as t→∞ and Ar(j)

⊥ (t) = Ar
(j)
⊥ (0) = Ar

(1)
⊥ .

Adaptive choice of the initial ensemble to ensure convergence of the residuals.
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Long-time Behaviour (Linear Case)
Idea of Proof

Subspace property

Ae(j)(t) =
J∑

k=1

`jk(t)Ae(k)(0)

where the matrix L = {`jk} is invertible.

Decomposition of the residual

Ar(j)(t) =
J∑

k=1

αkAe
(k)(t) +Ar

(1)
⊥

Convergence of the residuals

Boundedness of the coefficient vector

|α(t)|2 ≤
λ

(J)
0

λmin
0
|α(0)|2

gives convergence of the residuals.
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Long-time Behaviour for Noisy Data (Linear Case)

Find the parameters u from (noisy) observations y†

y† = Au† + η†

Global Existence of Solutions X

Ensemble Collapse X

Convergence of Residuals → convergence of the misfit
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Variants on EnKF

Variance Inflation
du(j)

dt = −
(
αC0 + C(u)

)
DuΦ(u(j); y), j = 1, . . . , J ,

where C0 is a self-adjoint, strictly positive operator.

Localisation

Randomised Search
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Variants on EnKF

Variance Inflation

Localisation

ρ : D ×D → R , ρ(x, y) = exp(−|x− y|r) ,

where D ⊂ Rd denotes the physical domain and | · | is a suitable norm in D, r ∈ N.

du(j)

dt = −C loc(u)DuΦ(u(j); y), j = 1, . . . , J ,

where C loc(u)φ(x) =
∫

D
φ(y)k(x, y)ρ(x, y) dy with k being the kernel of C(u), φ ∈ X .

Randomised Search
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Variants on EnKF

Variance Inflation

Localisation

Randomised Search

µn+1 = LnPnµn .

where Pn is any Markov kernel which preserves µn.

du(j)

dt = 1
J

J∑
k=1

〈
G(u(k))− G, y − G(u(j))

〉
Γ
(
u(k) − u

)
−u(j) − tC0DuΦ(u(j); y) +

√
2C0

dW (j)

dt .
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Numerical Experiments (Linear Case)
1-dimensional elliptic equation

−d2p

dx2 + p = u in D := (0, π) , p = 0 in ∂D ,

where

A = O ◦ L−1 with L = − d2

dx2 + id and D(L) = H2(D) ∩H1
0 (D)

O : X 7→ RK , equispaced observation points in D with spacing τON = 2−NK at
xk = k

2NK
, k = 1, . . . , 2NK − 1, ok(·) = δ(· − xk) with K = 2NK − 1.
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Numerical Experiments (Linear Case)
1-dimensional elliptic equation

−d2p

dx2 + p = u in D := (0, π) , p = 0 in ∂D .

The goal of computation is to recover the unknown data u† from observations

y = OL−1u† + η = Au† + η .
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Numerical Experiments (Linear Case)
1-dimensional elliptic equation

−d2p

dx2 + p = u in D := (0, π) , p = 0 in ∂D .

The goal of computation is to recover the unknown data u† from observations

y = OL−1u† + η = Au† + η .

Computational Setting
Noisy case, Γ = I.
u ∼ N (0, C) with C = β(A− id)−1 and with β = 10.
Finite element method using continuous, piecewise linear ansatz functions on a uniform
mesh with meshwidth h = 2−8 (the spatial discretisation leads to a discretisation of u, i.e.
u ∈ R28−1).

The space A = span{u(j)
0 }

J
j=1 is chosen based on the KL expansion of C = β(A− id)−1

(in red and green) and in an adaptive way minimising Ar(j)
⊥ (t) (in blue) .
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Numerical Experiments (Linear Case)
Underdetermined case, K = 24 − 1, J = 5
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Figure: Quantities |r|22, |Ar|2Γ w.r. to time t, J = 5 (red) and J = 50 (green) for the
discussed variants, β = 10, β = 10, K = 24 − 1, initial ensemble chosen based on KL
expansion of C = β(A− id)−1.
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Numerical Experiments (Linear Case)
Underdetermined case, K = 24 − 1, J = 5
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Figure: Comparison of the EnKF estimate with the truth and the observations, J = 5
(red) and J = 50 (green) for the discussed variants, β = 10, K = 24 − 1, initial
ensemble chosen based on KL expansion of C = β(A− id)−1.
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Conclusions and Outlook

Deriving the continuous time limit allows to determine the asymptotic
behaviour of important quantities of the algorithm.

The continuous approach offers the possibility to improve the performance
of the method by choosing appropriate numerical discretisation schemes
based on the properties of the solution.

Generalisation of the results to noisy observational data, i.e. Au† + η†.

Improving the performance of the algorithm by controlling the approximation
quality of the subspace spanned by the ensemble.

Analysis of EnKF variants
I Variance inflation
I Localisation
I Iterative regularisation
I Markov mixing
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