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Anamorphosis and dependence structure

Ensemble Kalman filter requires an assumption of Gaussian distribution
at the analysis stage.

Anamorphosis is a means of transforming data, so that the marginal
distribution can be assumed Gaussian.

Higher dimensional distributions in spatial and multivariate problems are
however not made Gaussian this way.

It is necessary to take care of the dependence structure in these problems.



Anamorphosis
Anamorphosis is widely used in geostatistics, in particular for simulation of
Gaussian random functions.

Data for each variable is transformed into Gaussian equivalents;
it is usually assumed that the multivariate distributions are Gaussian.

In the data ensemble assimilation litterature Gaussian anamorphosis appears
in Bertino et al. 2003, Simon & Bertino 2009, ...



Example: laser data time series
Sea level heights measured during 20 minutes at Ekofisk platform (Jan 1st, 2002)

Histograms of the original laser data and the corresponding Gaussian values.



Lagged-scatterplot for ∆t = 100 seconds
Comparison of Gaussian values 100 seconds apart

The shape is circular: it suggests a realization of a bivariate Gaussian
distribution with zero correlation.



Lagged-scatterplot for ∆t = 1 second
Comparison of Gaussian values 1 second apart

The shape is not ellipsoidal, ie the bivariate distribution is not bi-Gaussian
- although the marginal distributions are Gaussian.



Discussion

Anamorphosis secures that marginal distributions are Gaussian.
However, bivariate and multivariate distributions are not necessarily
Gaussian.

It is interesting to study the dependence structure especially for inspection of
the tails of the bivariate distributions.



Dependence structure



Multivariate extremes

In a multi-variate or a multi-location setting we may wonder:
how likely is it that an extreme event occurs simultaneously
for two (or more) variables?

how likely is it that an extreme event occurs simultaneously
at two (or more) geographical locations?

The bivariate distributions contain the answer.



Example: scatterplots between two sites
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The correlation coefficient is the same for the two realizations:

ρ = 0.7

However, the behaviour of bivariate extremes different between left and right

Actually different dependence functions were used to construct these examples.



Joint distribution and copula

The idea in defining the copula C is to separate
the dependence structure from the marginal distributions:

F (Z1,Z2, . . . ,ZN) = C( F1(Z1), F2(Z2), . . . ,Fn(Zn) )

The copula is itself a multivariate distribution, but with unit marginals.



Bivariate distributions with Gamma marginals

We consider two bivariate distributions FGau,FGum
with identical Gamma(3,1) marginals F1,F2 and
with different dependence structure:

FGau(z1, z2) = CGau
% (F (z1),F (z2))

FGum(x , y) = CGum
β (F (z1),F (z2))

To obtain the same overall linear correlation ρ = .7
the parameters of the copula functions were set to:

% = .71 and β = .54

(for details see Embrechts et al. 2002, p22)



Plot of the two bivariate distributions
Marginals are Gamma(3,1)

Bivariate distribution with Gaussian copula
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Discussion

Copulas are a convenient tool for analysing bivariate distributions and
separating the dependence structure from the marginal distributions.

The Gaussian copula belongs to the family of elliptic copulas,
and implies asymptotically independent extremes.
This may be unrealistic!!!

The Gumbel copula does not belong to that family
and is suitable for extreme value analysis/simulation.

Thus, paradoxically, from the point of view of extreme value theory
a Gaussian dependence structure is generally not desirable!



Discussion (2)

For a detailed definition of asymptotic dependence/independence of extremes
see e.g. Bacro & Toulemonde (2013) who list the following facts:

jointly Gaussian variables which are not perfectly correlated are
asymptotically independent;

independence implies asymptotic independence
but the converse is not true;

detecting asymptotic independence is fundamental;

fitting asymptotically dependent models to
asymptotically independent data leads to over- or under-estimation
of probabilities of extreme joint events.

This topic is clearly of interest in multivariate ensemble forecasting.



Anecdote: financial extremes

Gaussian copulas were the main ingredient of a formula proposed by Li for
financial analysis in 2000.

It has been widely used by financial industry due to its simplicity.

Its inherent underevaluation of joint risks is deemed to be partly
responsible for the unforeseen advent of the financial crisis of 2007-2009.

See the web paper by Salmon (2009):



Ensemble forecasting



Multivariate empirical copulas

Schefzik (2013) defines multivariate discrete copulas and
applies them in an ensemble forecasting method (Ensemble Copula Coupling).

Three steps of ECC applied to a raw ensemble of numerical model runs:
1 Apply to each variable (or site) individually a statistical postprocessing

technique (e.g. BMA) to get calibrated and sharp predictive distributions.
2 Draw a sample from each predictive distribution.
3 Rearrange these samples in the rank order structure of the initial raw

ensemble to get the ECC postprocessed ensemble.

Step 3 represents comparably negligible numerical effort.



Example (two sites): ensemble copula coupling
24h-forecasts for temperature with 50-member ECMWF-ensemble (from Schefzik, 2013)

Raw (a), independently postprocessed (b) and ECC ensembles (c):

the dependence structure of the raw ensemble is reproduced in the ECC
ensemble (analog patterns).



Discussion

Empirical copula coupling: a simple and fast approach to assemble samples
from individual predictive distributions into a joint multivariate
distribution respecting the initial dependence structure.

Wilks (2014) has compared ECC with the Schaake shuffle and
recommends the latter type of empirical copula.



Conclusion

It is essential in multivariate problems to generate predictive distributions
with the appropriate dependence structure.
Empirical copula methods provide a simple and fast method
to assemble individual forecasts.
It has not been examined yet how this compares
to joint forecasting of predictive distributions.
Modelling and forecasting extremal dependencies for multivariate
processes are a challenging problem in ensemble forecasting and
assimilation.
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