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Uncertainty in Model-based Prediction
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Increasing Availability of Sensor Based Online Data:

• Material characterization (geo-chemical, textural and physical properties)

• Equipment performance, upstream and downstream (e.g. efficiency, 

down-time)

• Equipment location (e.g. GPS, UPS)

New Potential: Sensor Data
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Future Potential – Availability of Data

Data Mining

Content

How can we make best use of the available data?

• Closing the Loop: A feed-back framework for Real-Time Resource Model 

Updating 

• A Kalman Filter Approach

• Using Online Data for Improved Production Control

• Illustrative Case Study: Coal
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Towards Closed-Loop Management
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Towards Closed-Loop Management

Z*(x)
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Drillhole Data
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Interpolation
(Kriging)

Simulation Realisation 1&10
(Conditional Simulation)

(Benndorf 2013)

Resource Model

Generation of Prior Models

• Best local estimation,

• Minimization of error-variance estimate.

• Represent possible scenarios about the deposit,

• Represent structural behavior of data (in-situ variability),

• Modelled by many different realizations,

• Differences between realizations capture uncertainty

Seam Geometry and CV
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Linking Model and Observation

Production sequence – Matrix A
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𝑎𝑛,1 ⋯ 𝑎𝑛,𝑚

• n mining blocks

• each of the blocks contributes 

to a blend, which is observed at 

a sensor station at time ti

• m measurements are taken 

• ai,j proportion block i
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blend, observed at time j by 

measurement li
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𝒁∗ 𝒙 =𝒁∗0 𝒙 + 𝑲 (𝒗 − 𝑨𝒁∗0 𝒙 )

𝒁∗ 𝒙 … updated short-term block model (a posteriori)

𝒁∗𝟎 𝒙 … prior block model based (without online sensor data)

v          … vector of observations (sensor signal at different points in time t)

𝑨 … design matrix representing the contribution of each block per time 

interval to the production observed at sensor station

K … updating factor (Kalman-Gain)

Resource Model Updating
Sequential Model Updating - A Kalman Filter Approach
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Sequential Model Updating – A “BLUE”

𝒆(𝒙)𝑡+1 = 𝒛(𝒙)𝑡+1 − 𝒛∗(𝒙)𝑡+1

𝑲 = 𝑪𝑡,𝑡𝑨
𝑻(𝑨𝑪𝑡,𝑡𝑨

𝑻 + 𝑪𝑣,𝑣)
−𝟏

Estimation error:

Estimation variance to be minimized:

Updating factor:

𝑪𝑡+1,𝑡+1 = 𝐸 𝒆(𝒙)𝑡+1𝒆(𝒙)𝑡+1
𝑇

Resource Model Updating
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Sequential Model Updating – The Integrative Character

𝑲 = 𝑪𝑡,𝑡𝑨
𝑻(𝑨𝑪𝑡,𝑡𝑨

𝑻 + 𝑪𝑣,𝑣)
−𝟏

Resource Model Updating

Model Uncertainty Extraction Sequence Sensor Precision
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Sequential Model Updating

Resource Model Updating

Main challenges:

• Large grids
• Industrial Case: 4,441,608 blocks

• Non-linear relationships between model and observation

• Non-Gaussian data
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Sequential Model Updating 

A Non-Linear Version – The Ensemble Kalman Filter

Resource Model Updating

(Reproduced after Geir Evensen 1993)
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Resource Model Updating

*Z Haiyan, J J Gomez-Hernandez, 
H H Franssen, L Li. 2011. An 
approach to handling non-

Gaussianity of parameters and 
state variables. Advances in Water 

Resources, 844-864.

Sequential Model Updating 

To handle Non-Gaussian Data… N-Score-Ensemble Kalman Filter*
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Illustrative Case Study

Updating the Calorific Value in a Large Coal Mine 

Case Study: Walker Lake Data Set

(Exhaustive “true” data are available)

Model based prediction: 

• Estimated block model (5200t/block)

• Capacity Excavator 1:  500 t/h

• Capacity Excavator 2:  1.000 t/h



22Challenge the future

Illustrative Case Study

Updating the Calorific Value in a Large Coal Mine 

Sensor Observations:

• Artificial sensor data for a 10 minute average (representing 250 t)
• Relative sensor error is varied between 1%, 5% and 10% 
• Sensor data obtained:

• Model based prediction + dispersion variance + sensor error

C
V

 i
n

 M
J

/k
g

5

6

7

8

9

10

11

0 5 10 15 20 25 30

True Block Grade

True Block Grade + Dispesion Variance

True Block Grade + Dispesion Variance + Sensor Error



23Challenge the future

Illustrative Case Study

Prior Block Model 
based on Exploration Data 

Updated Block Model 
Integrating Sensor Data 

Differences
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Illustrative Case Study

Comparison to Reality
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• Significant improvement in prediction

• Increased confidence in dispatch decisions

• Less miss-classified blocks (ore/waste)

• Less shipped train loads out of spec

• Increased customer satisfaction and revenue

• Magnitude of improvement depends on level of exploration, 
variability and sensor error

Illustrative Case Study - Results
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• EU - RFCS funded project RTRO-Coal

Current Work 

Prior Model

with partners:
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Conclusions

• Modern ICT provides online data, which can be the basis for (near-) 
continuous process monitoring at different stages of the mining value 
chain

• Utilizing these data for (near-) real-time decision making offers huge 
potential for more sustainable extraction of mineral resource 

• Closed Loop Concepts offer:

• Integration of prediction and process models with data gathering 

• Interdisciplinary and transparent project communication (breaking 
the silos)

• More complex use of data for increased resource efficiency



28Challenge the future

Thank You for Your Attention

Source: RWE

Contact: Cansın Yüksel

C.Yuksel@tudelft.nl


