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Paper

MWR special issue on DA, 2015 ?

Abstract: A square root approach is considered for the problem of accounting for
model noise in the forecast step of the ensemble Kalman filter (EnKF) and related
algorithms. Primarily intended to replace additive, pseudo-random noise simulation,
the core method is based on the analysis step of ensemble square root filters, and
consists in the deterministic computation of a transform matrix. The theoretical
advantages regarding dynamical consistency are surveyed, applying equally well to the
square root method in the analysis step. A fundamental problem due to the limited
size of the ensemble subspace is discussed, and novel solutions that complement the
core method are suggested and studied. Benchmarks from twin experiments with
simple, low-order dynamics indicate improved performance over standard approaches
such as additive, simulated noise and multiplicative inflation.
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Model noise – Problem statement

Assume

xt+1 = f(xt) + qt , where qt ∼ N (0,QQQ) , (1)

with f and QQQ = Cov(q) perfectly known.

Then we want the forecast ensemble to satisfy

P̄̄P̄Pf = P̄̄P̄P + QQQ , (2)

where

P̄̄P̄P = 1
N − 1

∑
n

(xn − x̄)(xn − x̄)T . (3)
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Outline

Sqrt-Core

Initial comparisons

Residual noise treatment

Further experiments
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Lessons learnt the past 15 years
Any square root update, AAA 7→ AAATTT, will

I deterministically match covariance relations
I preserve the ensemble subspace
I satisfy linear, homogeneous, equality constraints ?

Furthermore, the “symmetric choice”, AAA 7→ AAATTTs, will
I preserve the mean
I satisfy linear, inhomogeneous constraints ?
I satisfy the first-order approximation to non-linear constraints ?
I minimise ensemble displacement ?
I yield equally likely realisations ?

?: (plausibly) improves “dynamical consistency” of realisations.
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Sqrt-Core
P̄̄P̄Pf = P̄̄P̄P + QQQ can be rewritten using P̄̄P̄P = 1

N−1AAAAAAT, yielding:

AAAfAAAf T = AAAAAAT + (N−1)QQQ . (4)

(Brutally) factorising out AAA using the M-P pseudoinverse, AAA+:

AAAfAAAf T = AAA
(

IIIN + (N−1)AAA+QQQ(AAAT)+
)

AAAT , (5)

we get Sqrt-Core:

AAAf = AAATTTf
s (6)

where TTTf
s is the sym. square root of the middle factor in eqn. (5).

We also see that the problem of eqn. (4) is ill-posed. . .
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Sqrt-Core

In fact, Sqrt-Core only satisfies

AAAfAAAf T = AAAAAAT + (N−1)Q̂̂Q̂Q (7)

where Q̂̂Q̂Q = ΠΠΠAAAQQQΠΠΠAAA, and ΠΠΠAAA = AAAAAA+ is the orthogonal projector
onto the column space of AAA.
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Overview of alternatives

Method AAAf = where thus satisfying

Add-Q AAA + DDD DDD = QQQ1/2Ξ, ξn ∼ N (0, IIIm) EDDD(eqn. (4))
Mult-1 λAAA λ2 = trace(P̄̄P̄P+QQQ)

trace(P̄̄P̄P) trace(eqn. (4))

Mult-m ΛΛΛAAA ΛΛΛ2 = diag(P̄̄P̄P)−1 diag(P̄̄P̄P + QQQ) diag(eqn. (4))
Sqrt-Core AAATTT TTT =

(
IIIN + (N−1)AAA+QQQAAA+T)1/2

s
ΠΠΠAAA(eqn. (4))ΠΠΠAAA

Also:
I Complete resampling
I 2nd-order exact sampling (Pham, 2001)
I A similar (but distinct) square root method (Nakano, 2013)
I Relaxation (Zhang et al., 2004)
I Forcings fields or boundary conditions (Shutts, 2005)
I SEIK, with forgetting factor (Pham, 2001)
I RRSQRT, with orthogonal ensemble (Heemink et al., 2001)10 / 34
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Snapshot comparison
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Figure: Snapshot of ensemble forecasts with the Lorenz-63 system after
model noise incorporation.
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Experimental setup

I Twin experiment: tracking a simulated “truth”, xt

I RMSE =
√

1
m‖x̄t − xt‖22

I Analysis update:
I ETKF (using the symmetric square root)
I No localisation
I Inflation (for analysis update errors): tuned for Add-Q

I Baselines
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Lorenz-63 – system
Integrated with RK4:
r = 28, σ = 10, and b = 8/3.

ẋ = σ(y − x) ,

ẏ = rx− y − xz ,

ż = xy − bz ,

Direct observations of the entire
state, with RRR = 2III3.

QQQ =
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Lorenz-63 – vs N , with ∆tobs = 0.05
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where the particle filter uses N = 104.
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Lorenz-63 – vs N , with ∆tobs = 0.25
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Particle filter RMSE: 0.57. Extended Kalman filter RMSE: 1.4.
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Lorenz-63 – vs ∆tobs , with N = 12
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Lorenz-63 – vs QQQ multiplier, with N = 12, ∆tobs = 21

10
−1

10
0

10
1

10
2

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Noise strength (mult iplie r to Q )

R
M
S
E

 

 

3D-Var
ExtKF
PartFilt

Add-Q

Mult-m

Sqrt-Core

17 / 34



Outline

Sqrt-Core

Initial comparisons

Residual noise treatment

Further experiments

18 / 34



Improving Sqrt-Core: Residual noise treatment

After Sqrt-Core there is still [QQQ− Q̂QQ] unaccounted for.
=⇒ Residual noise problem:

AAAfAAAf T = AAAAAAT + (N−1)[QQQ− Q̂QQ] . (8)

Note: notation recycled from original problem.
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A first approach – Sqrt-Add-Z

1. Define ZZZ = (IIIm −ΠΠΠAAA)QQQ1/2.

2. Add q̃n = ZZZξ̃n to realisation n, with ξ̃n ∼ N (0, IIIm).

But due to cross-terms, ZZZ is not a square root of [QQQ− Q̂QQ],
and therefore Sqrt-Add-Z is biased:

E{ξ̃}
(

AAAfAAAf T) = AAAAAAT + (N−1)[QQQ− Q̂QQ]−
(

Q̂̂Q̂Q1/2ZZZT + ZZZQ̂̂Q̂QT/2
)
.

Compare to eqn. (8).
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The underlying problem: replacing one draw with two

As an analogy to the “core+residual” problem, define

q = Q̂̂Q̂Q1/2
ξ + ZZZξ , (9)

q⊥⊥ = Q̂̂Q̂Q1/2
ξ̂ + ZZZξ̃ , (10)

where ξ, ξ̂, ξ̃ ∼ N (0, IIIm) are all independent.

Note that

Cov(q) = QQQ = Q̂̂Q̂Q + ZZZZZZT︸ ︷︷ ︸
Cov(q⊥⊥)

+
(

Q̂̂Q̂Q1/2ZZZT + ZZZQ̂̂Q̂QT/2
)
. (11)
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Reintroducing dependence – Sqrt-Dep
Let ΠΠΠ be any orthogonal projection matrix, and define

ξ⊥⊥ = ΠΠΠξ̂ + (IIIm −ΠΠΠ)ξ̃ , (12)

where, as before, ξ̂, ξ̃ ∼ N (0, IIIm) are independent.

But, ξ⊥⊥ ∼ N (0, IIIm) too (no cross terms)!

Choose ΠΠΠ so that ZZZΠΠΠ = 0. Rather than eqn. (9), redefine q:

q = QQQ1/2ξ⊥⊥ . (13)

Then,

Cov(q) = QQQ . (14)
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The solution: reintroducing dependence – Sqrt-Dep

But also:

q = (Q̂̂Q̂Q1/2 + ZZZ)
(

ΠΠΠξ̂ + (IIIm −ΠΠΠ)ξ̃
)

(15)

= Q̂̂Q̂Q1/2
ξ̂ + ZZZ

(
ΠΠΠξ̂ + (IIIm −ΠΠΠ)ξ̃

)
. (16)

Hence, while maintaining Cov(q) = QQQ, the influence of ξ̃ has been
confined to span(ZZZ) = span(AAA)⊥ .

Algorithm: for each realisation:

1. Compute ξ̂n corresponding to Sqrt-Core

2. Draw ξ̃n

3. Total (core+residual) update: eqn. (16)
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Overview of alternatives

Method AAAf = where

Add-Q AAA + DDD DDD = QQQ1/2Ξ, each column of Ξ drawn from N (0, IIIm)
Mult-1 λAAA λ2 = trace(P̄̄P̄P+QQQ)

trace(P̄̄P̄P)
Mult-m ΛΛΛAAA ΛΛΛ2 = diag(P̄̄P̄P)−1 diag(P̄̄P̄P + QQQ)
Sqrt-Core AAATTT TTT =

(
IIIN + (N−1)AAA+QQQAAA+T)1/2

s

Also:
I Sqrt-Add-Z
I Sqrt-Dep
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Linear advection – system

For t = 0, 1, . . . and i = 1, . . . ,m, and with periodic BCs,

xt+1
i = 0.98xt

i−1 . (17)

Direct observation of the truth at p = 40 equidistant locations
with RRR = 0.01IIIp, every seventh time step: ∆tobs = 7∆t = 4.9.
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QQQ is such that although m = 1000,
the system subspace only has 50 dimensions.
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Linear advection – results
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Lorenz-96 – system

Integrated with RK4,
dxi

dt
= (xi+1 − xi−2)xi−1 − xi + F , (18)

with periodic BCs, i = 1, . . . ,m, m = 40, and

Qi,j = exp
(
−1/30‖i− j‖22

)
+ 0.1δi,j . (19)
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Lorenz-96 – vs N , with ∆tobs = 0.05
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Lorenz-96 – vs N , with ∆tobs = 0.15
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Lorenz-96 – vs ∆tobs , with N = 30
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Lorenz-96 – vs QQQ multiplier, with N = 25, ∆tobs = 0.05
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Lorenz-96 – vs F , with N = 25, ∆tobs = 0.05
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Summary

I Extending the square root method to the forecast step
I Main aim: eliminate sampling errors
I Secondary benefit: dynamical consistency

I Sqrt-Core is deficient when [QQQ− Q̂QQ] is significant
I Sqrt-Add-Z is simple and efficient, but biased
I Sqrt-Dep is costly, but more satisfactory
I Both methods perform robustly better than

Mult-m and Add-Q
I Future directions

I Experiments on larger models and more realistic model error
I Improvements to Sqrt-Add-Z and Sqrt-Dep
I Investigate perspectives from Nakano (2013) and M. Bocquet
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