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Motivation: Reservoir Geological Uncertainty
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Workflow:

The closed-loop robust decision workflow for reservoir management (Jansen et al., 2009).
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Workflow

OPT1 OPT2 OPT3 OPT4HM1 HM2 HM3 HM4

DEC1 DEC2 DEC3 DEC4

Wells 1 & 2 Wells 3 & 4 Wells 5 & 6 Wells 7 & 8

DIGIRES decision workflow for field development. Drilling two wells per year, we use the workflow to
decide on the optimal drilling schedule.
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Optimization - Objective function

• Objective function:

NPV =

Nt∑
i=1

R(ti)
(1 + d)ti/τ

,

• Revenue term:

R(ti) = Qop(ti) · rop + Qgp(ti) · rgp − Qwp(ti) · rwp − Qwi(ti) · rwi.

Qop,Qgp,Qwp,Qwi - rates of oil, water production and water injection.
rop, rgp, rwp, rwi - corresponding prices/costs for oil, water production and water injection.
d - discount rate, ti - report time, τ - total number of days per year.
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Ensemble-based optimization (EnOpt)

• Pre-conditioned steepest ascend:

xk+1 = xk + ηkCxx∇f (xk)

• Gradient approximation with geological uncertainty:

Cxx∇f (x) ≈ 1
Ne

Ne∑
j=1

[f (xj,mj)− f (x,mj)][xj − x]

• For more information we refer to:
Chang et al. (2019), Stordal et al. (2016), Chen et al. (2009)
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HM - Subspace EnRML

• An updated ensemble realization, xa
j :

xa
j = xf

j + Awj,

• The cost function in the Ensemble Subspace:

J(wj) =
1
2

wT
j wj +

1
2

(
g(xf

j + Awj)− dj

)T
C−1

dd

(
g(xf

j + Awj)− dj

)
.

xf
j - the prior realization. wj - the ensemble anomaly.

• For more information we refer to:
Evensen et al. (2019), Evensen (2021).

9 / 42



  

Case I: Closed-loop reservoir
management
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Introduction - REEK Case

Reek Model:
• Model size: 40 × 64 × 14
• Wells: 5 producers, 3 injectors.
• Control mode: BHP (producers), BHP (injectors).
• Yearly recursive model update: 12 months × 5 years.
• Geological realizations: 100
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Selected geological realizations

Permeability of Layer 1 on selected geological realizations and the mean model.
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Optimization Settings

• EnOpt with backtracking is applied, N = 100.

• Control variables are drilling priorities of 8 wells.

• The starting point of drilling priorities follows uniform distribution, X ∼ U(0, 1).

• The initial value for the stepsize is 0.1 and for the ensemble perturbation covariance is
0.01.

13 / 42



  

History Matching Settings

• Subspace EnRML is applied, number of realizations N = 100.

• Observations: WOPR, WGPR, WWPR of producers and WWIR of injectors.

• Observation error: relative variance is 5%, absolute variance is 64 for WOPR and
WWPR, 1e4 for WGPR and 25 for WWIR (for observation values lower than 10).

• Parameter boundries: PERMX ∼ [e−5, e7.5], PORO ∼ [0.001, 0.5], MULTFLT ∼ [0, 0.7].
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Decision Stages - Optimization
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OPT1 - Optimization of the Decision Stage 1

Mean NPV vs. iter NPVs of the best run Decision

Optimization of the Decision Stage 1. Wells OP-1 and WI-2 are drilled after the optimization.
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OPT2 - Optimization of the Decision Stage 2

Mean NPV vs. iter NPVs of the best run Decision

Optimization of the Decision Stage 2. Wells OP-4 and WI-3 are drilled after the optimization.
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OPT3 - Optimization of the Decision Stage 3

Mean NPV vs. iter NPVs of the best run Decision

Optimization of the Decision Stage 2. Wells OP-2 and OP-3 are drilled after the optimization.
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Summary - Uncertainty of optimization steps

(a) OPT1 (b) OPT2 (c) OPT3

Uncertainty is reduced during the workflow.
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Decision Stages - History Matching
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Summary - Cost function values of history matching steps

(a) HM1 (b) HM2 (c) HM3

Data mismatch is reduced during the workflow.
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Summary - Production profiles for OP-1

Production profiles for OP-1 following the different history matching steps HM1 (upper), HM2
(middle), and HM3 (lower). 22 / 42
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Summary - Production profiles for WI-2 and WI-3

Injections rates of WI-2 (left) and WI-3 (right) following the three history-matching steps HM1
(upper), HM2 (middle), and HM3 (lower). 23 / 42
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MULTFLT updates - Logarithm scale

(a) HM1 (b) HM2 (c) HM3

Fault multiplier updates for all history matching steps. Grey, blue and red circles represent prior,
posterior and reference values.
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MULTFLT updates - Original scale

(a) HM1 (b) HM2 (c) HM3

Fault multiplier updates for all history matching steps. Grey, blue and red circles represent prior,
posterior and reference values.
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Decision on the last two wells

Comparison of the four decision scenarios on whether to drill the last two wells.
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Case II: Efficient optimization
using a mean model
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Motivation

• Number of simulations required:
▶ Opt. on all geo-models: Nsim = Niter × (2Ne), with Ne = Nm for EnOpt method (Fonseca

et al., 2017).
▶ Opt. on the mean model: Nsim = Niter × (Ne + 1) + Nm.

• Example of computational efforts with Nm = 100:

Niter Opt. on all geo-models Opt. on the mean model Opt. on the mean model
Nsim(Ne = 100) Nsim(Ne = 30) Nsim(Ne = 100)

20 4000 31 × 20 + 100 = 720 101 × 20 + 100 = 2120
50 10000 31 × 50 + 100 = 1650 101 × 50 + 100 = 5150

Number of simulations required for each optimization scenarios.

• Goal: Achieve better optimal solutions with less computational effort!
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Estimation of expected value (Wang and Oliver, 2020)
• Average NPV over an ensemble of reservoir models:

E[f (x,m)] = f (x) =
1

Nm

Nm∑
j=1

f (x,mj) (1)

• Value from the mean model (averaged uncertain parameters):

f (x,E[m]) = f (x,m) (2)

Note that f (x,E[m]) ̸= E[f (x,m)].
• Estimation of average NPV from the mean model with a multiplicative correction factor:

f (xi) = α(xi)f (xi,m) (3)

α(xi) =
1

Nm

Nm∑
j=1

f (xi,mj)

f (xi,m)
=

1
Nm

Nm∑
j=1

βij (4)
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Estimation of correction factor α
• Random samples of controls and model realizations:

b = [β11, β22, · · · , βNmNm ]
T
, βii = β(xi,mi) =

f (xi,mi)

f (xi,m)
(5)

• Approaches
▶ Estimate the mean value of the correction factor:

α ≈ 1
Nm

N∑
j=1

β(xj,mj) (6)

▶ Distance-based localization:

α̂(xi) =

∑Nm
j=1 ω(xi, xj, L)β(xj,mj)∑Nm

j=1 ω(xi, xj, L)
(7)

where, L is the taper length, ω is the weight calculated based on the distance between xi

and xj.
• See Wang and Oliver (2020) for more details.
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Introduction - REEK Case

Reek Model:
• Model size: 40 × 64 × 14
• Wells: 5 producers, 3 injectors.
• Control parameters to optimize: WOPR (producers), WWIR (injectors) every six

months during 10 years of production period.
• Geological realizations: 100
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Mean model for REEK

Settings:
• Arithmetic mean of porosity, fault multipliers and log(PERMX) are used as the mean

model.

• Control variables are oil rates for producers and injection rates for injectors.

• 100 control strategies are generated by perturbing the reference rates.

• Each control strategy is evaluated on one realization (1to1) and the mean model to
get "observed" NPVs (training set).

• Size of the training set: 100.

• Size of the testing set: 100.
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The mean model

Permeability of Layer 1 on selected geological realizations and the mean model.
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Well rate training samples (scaled data)

Selected examples of training samples.
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Localization of bias correction factor α

100 new control strategies are generated as a testing set.
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Distribution of NPV at different taper length
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Optimization performance

EnOpt on all models (Nsim = 3000) EnOpt on the mean model (Nsim = 1774)
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  EnOpt on all models (Nsim = 3000) EnOpt on the mean model (Nsim = 1774)
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Summary

• The concept of combining optimization and history matching as a decision-making
workflow is demonstrated on the REEK case.

• Multiple starting points help the optimization algorithm to find solutions that are closer
to the global optimum.

• History matching helps to update the model and achieve better understanding on
model uncertainty, which can assist the optimization step to obtain more robust
solutions.

• Performing optimization and history matching iteratively provides decision-makers
better tools for reservoir management.

• The preliminary study show that the mean-model bias-correction method helped to
find a better solution with less computational effort.
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