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Introduction



Motivation: Reservoir Geological Uncertainty
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Workflow
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DIGIRES decision workflow for field development. Drilling two wells per year, we use the workflow to
decide on the optimal drilling schedule.
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Optimization - Objective function

¢ Objective function:

e Revenue term:

R(ti) = Qop(ti) *Top + Qgp(ti) “Fgp — pr(ti) Twp — Qwi(ti) AT

Qop, Ogp, Oup, Owi - rates of oil, water production and water injection.

Tops Fep, Twp, Twi - COrresponding prices/costs for oil, water production and water injection.

d - discount rate, ¢ - report time, 7 - total number of days per year.
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Ensemble-based optimization (EnOpt)

¢ Pre-conditioned steepest ascend:
A =X 1 fC V()

o Gradient approximation with geological uncertainty:

Ne

Ca¥I () % 1 [ m) 5l —

e ]:1

e For more information we refer to:
Chang et al. (2019), Stordal et al. (2016), Chen et al. (2009)
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HM - Subspace EnRML

¢ An updated ensemble realization, x{
X = xjf + Awj,

o The cost function in the Ensemble Subspace:

Jon) = 3w+ 5 (804 + aw) — ) i (o +Awy) —

2

x_’; - the prior realization. w; - the ensemble anomaly.

e For more information we refer to:
Evensen et al. (2019), Evensen (2021).
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Case I: Closed-loop reservoir
management



Introduction - REEK Case

Reek Model:
o Model size: 40 x 64 x 14
o Wells: 5 producers, 3 injectors.
o Control mode: BHP (producers), BHP (injectors).
o Yearly recursive model update: 12 months x 5 years.

o Geological realizations: 100
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Selected geological realizations
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*RCE
Optimization Settings

EnOpt with backtracking is applied, N = 100.

¢ Control variables are drilling priorities of 8 wells.

The starting point of drilling priorities follows uniform distribution, X ~ U(0, 1).

The initial value for the stepsize is 0.1 and for the ensemble perturbation covariance is
0.01.
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History Matching Settings

Subspace EnRML is applied, number of realizations N = 100.

Observations: WOPR, WGPR, WWPR of producers and WWIR of injectors.

Observation error: relative variance is 5%, absolute variance is 64 for WOPR and
WWPR, 1e4 for WGPR and 25 for WWIR (for observation values lower than 10).

Parameter boundries: PERMX ~ [e=3, ¢”-], PORO ~ [0.001,0.5], MULTFLT ~ [0,0.7].
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Decision Stages - Optimization
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OPT1 - Optimization of the Decision Stage 1
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Optimization of the Decision Stage 1. Wells OP-1 and WI-2 are drilled after the optimization.

16/42



OPT2 - Optimization of the Decision Stage 2
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Wells OP-4 and WI-3 are drilled after the optimization.
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OPT3 - Optimization of the Decision Stage 3
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Wells OP-2 and OP-3 are drilled after the optimization.
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:RCE
Summary - Uncertainty of optimization steps
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Uncertainty is reduced during the workflow.
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Decision Stages - History Matching
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Summary - Cost function values of history matching steps |
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Summary - Production profiles for OP-1
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Production profiles for OP-1 following the different history matching steps HM1 (upper), HM2
(middle), and HM3 (lower). 05/42
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Summary - Production profiles for WI-2 and WI-3
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MULTFLT updates - Logarithm scale
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MULTFLT updates - Original scale
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Decision on the last two wells
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Comparison of the four decision scenarios on whether to drill the last two wells.
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Case lI: Efficient optimization
using a mean model



RCE

Motivation

o Number of simulations required:

> Opt. on all geo-models: Nyin = Nier X (2N.), with N. = N,, for EnOpt method (Fonseca
etal., 2017).
» Opt. on the mean model: Nyu = Nier X (Ne + 1) + N
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Motivation

o Number of simulations required:

> Opt. on all geo-models: Nyin = Nier X (2N.), with N. = N,, for EnOpt method (Fonseca
etal., 2017).

» Opt. on the mean model: N, =

iter X (Ne + 1) +Nm

o Example of computational efforts with ~,, = 100:

Nir | Opt. on all geo-models | Opt. on the mean model | Opt. on the mean model
Nyim(N, = 100) Nyim(N, = 30) Nyim(N, = 100)

20 4000 31 x 20 4 100 = 720 101 x 20 4 100 = 2120

50 10000 31 x 50+ 100 = 1650 101 x 50 4+ 100 = 5150

Number of simulations required for each optimization scenarios.
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Motivation

o Number of simulations required:

> Opt. on all geo-models: Nyin = Nier X (2N.), with N. = N,, for EnOpt method (Fonseca
etal., 2017).

» Opt. on the mean model: N, =

iter X (Ne + 1) +Nm

o Example of computational efforts with ~,, = 100:

Nir | Opt. on all geo-models | Opt. on the mean model | Opt. on the mean model
Nyim(N, = 100) Nyim(N, = 30) Nyim(N, = 100)

20 4000 31 x 20 4 100 = 720 101 x 20 4 100 = 2120

50 10000 31 x 50+ 100 = 1650 101 x 50 4+ 100 = 5150

Number of simulations required for each optimization scenarios.

¢ Goal: Achieve better optimal solutions with less computational effort!

28/42



Estimation of expected value (Wang and Oliver, 2020)

o Average NPV over an ensemble of reservoir models:

Nin

Bl (sm)] =70 = - S f ) m

j=1
o Value from the mean model (averaged uncertain parameters):
f(x, E[m]) = f(x,m) ()

Note that f(x, E[m]) # E[f(x, m)].
e Estimation of average NPV from the mean model with a multiplicative correction factor:

J(xi) = a)f (xi, /) 3)

Zf L) Z i @
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Estimation of correction factor «
¢ Random samples of controls and model realizations:

b= (811,82, Buw,) s Bi = Blxi,my) —fc((? "n’l;))

o Approaches
» Estimate the mean value of the correction factor:

N
E x]7 m]

» Distance-based localization:
S w(xi, x5, L) B(x;, my)
Zle w(xi,x;, L)

&(x,') =

(7)

where, L is the taper length, w is the weight calculated based on the distance between x;

and x;.
e See Wang and Oliver (2020) for more details.
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Introduction - REEK Case

Reek Model:
o Model size: 40 x 64 x 14
o Wells: 5 producers, 3 injectors.

¢ Control parameters to optimize: WOPR (producers), WWIR (injectors) every six
months during 10 years of production period.

¢ Geological realizations: 100
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*RCE
Mean model for REEK

Settings:

¢ Arithmetic mean of porosity, fault multipliers and log(PERMX) are used as the mean
model.

Control variables are oil rates for producers and injection rates for injectors.

100 control strategies are generated by perturbing the reference rates.

Each control strategy is evaluated on one realization (1to1) and the mean model to
get "observed" NPVs (training set).

Size of the training set: 100.

Size of the testing set: 100.
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The mean model
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Well rate training samples (scaled data)
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Localization of bias correction factor «
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100 new control strategies are generated as a testing set.
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Distribution of NPV at different taper length
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Optimization performance
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Summary

o The concept of combining optimization and history matching as a decision-making
workflow is demonstrated on the REEK case.

o Multiple starting points help the optimization algorithm to find solutions that are closer
to the global optimum.

o History matching helps to update the model and achieve better understanding on
model uncertainty, which can assist the optimization step to obtain more robust
solutions.

o Performing optimization and history matching iteratively provides decision-makers
better tools for reservoir management.

e The preliminary study show that the mean-model bias-correction method helped to
find a better solution with less computational effort.
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