
A SPARSE MATRIX FORMULATION OF
THE MODEL-BASED ENSEMBLE

KALMAN FILTER
Håkon Gryvill

Joint work with Håkon Tjelmeland



- Outline

1. Standard EnKF
2. Issues with standard EnKF
3. Model-based EnKF
4. Computational issues with model-based EnKF
5. New strategy
6. Results
7. Closing remarks

1



Introduction - State space model

x1 x2 xt−1 xt

y1 y2 yt−1 yt

▶ Variables of interest x1, . . . , xt ∈ Rn. High dimensional.
▶ x1 ∼ p(x1)

▶ Forward model xt+1 = g(xt , ϵt)

▶ Observations y1, . . . , yt ∈ Rm

▶ Observation model yt |xt ∼ N(Hxt ,R)

▶ Aim: filtering distribution p(xt |y1, . . . , yt)

2



Introduction - Update step

Part 1: Compute µ̃t+1 and Σ̃t+1

▶ Assume
x̃1
t+1, . . . , x̃

M
t+1|µt+1,Σt+1

iid∼
N(µt+1,Σt+1)

▶ Approximate µt+1 and Σt+1 by
µ̃t+1 and Σ̃t+1

x̃1
t+1 x̃mt+1 x̃Mt+1

µt+1
Σt+1

3



Introduction - Update step

Part 2: Update x̃mt+1 into xmt+1

▶ Assume x̃mt+1, xt+1|µ̃t+1, Σ̃t+1
iid∼ N(µ̃t+1, Σ̃t+1)

▶ yt+1|xt+1 ∼ N(Hxt+1,R)

▶ Require
xmt+1|µ̃t+1, Σ̃t+1, yt+1

d
= xt+1|µ̃t+1, Σ̃t+1, yt+1

Satisfied by standard EnKF update:

xmt+1 = x̃mt+1 + K̃t+1(yt+1 + ϵ̃mt+1 − Hx̃mt+1)

BΣ̃t+1B
T = (I − K̃t+1H)Σ̃t+1

x̃mt+1 xt+1

xmt+1 yt+1

µ̃t+1

Σ̃t+1

4



Introduction - Update step

Part 2: Update x̃mt+1 into xmt+1

▶ Assume x̃mt+1, xt+1|µ̃t+1, Σ̃t+1
iid∼ N(µ̃t+1, Σ̃t+1)

▶ yt+1|xt+1 ∼ N(Hxt+1,R)

▶ Require
xmt+1|µ̃t+1, Σ̃t+1, yt+1

d
= xt+1|µ̃t+1, Σ̃t+1, yt+1

Also satisfied by square root filter:

xmt+1 = µ̃t+1 + K̃t+1(yt+1 − Hµ̃t+1) + B(x̃mt+1 − µ̃t+1),

BΣ̃t+1B
T = (I − K̃t+1H)Σ̃t+1

x̃mt+1 xt+1

xmt+1 yt+1

µ̃t+1

Σ̃t+1

5



Introduction - Issues

▶ Uncertainty in µ̃t+1, Σ̃t+1 is ignored
− Solution proposed in Myrseth and Omre (2010) and Tsyrulnikov and Raktiko

(2017)
▶ Information in x̃mt+1 is used twice (inconsistently)

− Solution proposed in Houtekamer and Mitchell (1997)
▶ Information in yt+1 about µt+1,Σt+1 is ignored

− Discussed in Myrseth and Omre (2010), but ignored
▶ Why this EnKF update?
▶ EnKF tends to underestimate uncertainty

6



Model-based EnKF - Model-based update of x̃mt+1 to xmt+1

x̃1
t+1 x̃mt+1 x̃Mt+1

µt+1
Σt+1

x̃mt+1 xt+1

xmt+1 yt+1

µ̃t+1
Σ̃t+1

=⇒
x̃mt+1 xt+1

xmt+1 yt+1

µt+1
Σt+1

x̃1
t+1 x̃Mt+1

Introduced in Loe and Tjelmeland
(2020)



Model-based EnKF - Model-based update of x̃mt+1 to xmt+1

x̃1
t+1, . . . , x̃

M
t+1|µt+1,Σt+1

iid∼ N(µt+1,Σt+1)

(µt+1,Σt+1) ∼ NIW(µ0, λ,Ψ, ν)

yt+1|xt+1 ∼ N(Hxt+1,R)

x̃mt+1 xt+1

xmt+1 yt+1

µt+1
Σt+1

x̃1
t+1 x̃Mt+1

Require:

xmt+1|x̃1
t+1, . . . , x̃

m−1
t+1 , x̃m+1

t+1 , . . . , x̃Mt+1, yt+1
d
= xt+1|x̃1

t+1, . . . , x̃
m−1
t+1 , x̃m+1

t+1 , . . . , x̃Mt+1, yt+1

Optimality criterion: Minimise

E
[
(xmt+1 − x̃mt+1)

T (xmt+1 − x̃mt+1)
]



Model-based EnKF - Model-based update of x̃mt+1 to xmt+1

Algorithm
▶ Sample µm

t+1,Σ
m
t+1|x̃1

t+1, . . . , x̃
m−1
t+1 , x̃m+1

t+1 , . . . , x̃Mt+1, yt+1 ∼ NIW(µ⋆
0, λ

⋆,Ψ⋆, ν⋆)

▶ Compute Kalman gain Km
t+1

▶ Compute weight matrix Bm
t+1

▶ Update

xmt+1 = µm
t+1 + Bm

t+1(x̃
m
t+1 − µm

t+1) + Km
t+1(yt+1 − Hµm

t+1)

Results
▶ Provides reliable results with realistic uncertainty representation
▶ However: Computationally demanding

9



Model-based EnKF - Model-based update of x̃mt+1 to xmt+1

Algorithm
▶ Sample µm

t+1,Σ
m
t+1|x̃1

t+1, . . . , x̃
m−1
t+1 , x̃m+1

t+1 , . . . , x̃Mt+1, yt+1 ∼ NIW(µ⋆
0, λ

⋆,Ψ⋆, ν⋆)

▶ Compute Kalman gain Km
t+1

▶ Compute weight matrix Bm
t+1

▶ Update

xmt+1 = µm
t+1 + Bm

t+1(x̃
m
t+1 − µm

t+1) + Km
t+1(yt+1 − Hµm

t+1)

Results
▶ Provides reliable results with realistic uncertainty representation
▶ However: Computationally demanding

9



Computational issues - Prior for model parameters
Recall:
▶ (µt+1,Σt+1) ∼ NIW(µ0, λ,Ψ, ν)

▶ x̃1
t+1, . . . , x̃

M
t+1|µt+1,Σt+1

iid∼ N(µt+1,Σt+1)

=⇒ µm
t+1,Σ

m
t+1|x̃1

t+1, . . . , x̃
m−1
t+1 , x̃m+1

t+1 , . . . , x̃Mt+1, yt+1 ∼ NIW(µ⋆
0, λ

⋆,Ψ⋆, ν⋆)

Issues:
▶ Sampling from NIW(µ⋆

0, λ
⋆,Ψ⋆, ν⋆) is computationally demanding

▶ Σm
t+1 is a full matrix

Solution:
▶ Use sparse precision matrix Qt+1 = Σ−1

t+1
▶ Choose distribution such that

1. Qt+1|x̃1
t+1, . . . , x̃

m−1
t+1 , x̃m+1

t+1 , . . . , x̃Mt+1, yt+1 can be sampled efficiently
2. Qt+1|x̃1

t+1, . . . , x̃
m−1
t+1 , x̃m+1

t+1 , . . . , x̃Mt+1, yt+1 becomes sparse



Computational issues - Prior for model parameters
Recall:
▶ (µt+1,Σt+1) ∼ NIW(µ0, λ,Ψ, ν)

▶ x̃1
t+1, . . . , x̃

M
t+1|µt+1,Σt+1

iid∼ N(µt+1,Σt+1)

=⇒ µm
t+1,Σ

m
t+1|x̃1

t+1, . . . , x̃
m−1
t+1 , x̃m+1

t+1 , . . . , x̃Mt+1, yt+1 ∼ NIW(µ⋆
0, λ

⋆,Ψ⋆, ν⋆)

Issues:
▶ Sampling from NIW(µ⋆

0, λ
⋆,Ψ⋆, ν⋆) is computationally demanding

▶ Σm
t+1 is a full matrix

Solution:
▶ Use sparse precision matrix Qt+1 = Σ−1

t+1
▶ Choose distribution such that

1. Qt+1|x̃1
t+1, . . . , x̃

m−1
t+1 , x̃m+1

t+1 , . . . , x̃Mt+1, yt+1 can be sampled efficiently
2. Qt+1|x̃1

t+1, . . . , x̃
m−1
t+1 , x̃m+1

t+1 , . . . , x̃Mt+1, yt+1 becomes sparse



Computational issues - Prior for model parameters
Recall:
▶ (µt+1,Σt+1) ∼ NIW(µ0, λ,Ψ, ν)

▶ x̃1
t+1, . . . , x̃

M
t+1|µt+1,Σt+1

iid∼ N(µt+1,Σt+1)

=⇒ µm
t+1,Σ

m
t+1|x̃1

t+1, . . . , x̃
m−1
t+1 , x̃m+1

t+1 , . . . , x̃Mt+1, yt+1 ∼ NIW(µ⋆
0, λ

⋆,Ψ⋆, ν⋆)

Issues:
▶ Sampling from NIW(µ⋆

0, λ
⋆,Ψ⋆, ν⋆) is computationally demanding

▶ Σm
t+1 is a full matrix

Solution:
▶ Use sparse precision matrix Qt+1 = Σ−1

t+1
▶ Choose distribution such that

1. Qt+1|x̃1
t+1, . . . , x̃

m−1
t+1 , x̃m+1

t+1 , . . . , x̃Mt+1, yt+1 can be sampled efficiently
2. Qt+1|x̃1

t+1, . . . , x̃
m−1
t+1 , x̃m+1

t+1 , . . . , x̃Mt+1, yt+1 becomes sparse



Computational issues - Computing weight matrix Bm
t+1

Recall:

xmt+1 = µm
t+1 + Bm

t+1(x̃
m
t+1 − µm

t+1) + Km
t+1(yt+1 − Hµm

t+1)

"Optimal update"

We compute Bm
t+1 as follows

1. Cholesky decomposition VV T = Qt+1
2. Cholesky decomposition UUT = Qt+1 + HTRH
3. Compute Z = V TU
4. Compute singular value decomposition Z = PGFT

5. Compute Bm
t+1 = U−TFPTV T

Issue:
Computing step 4 is computationally demanding when Z is large

11



Computational issues - Computing weight matrix Bm
t+1

Recall:

xmt+1 = µm
t+1 + Bm

t+1(x̃
m
t+1 − µm

t+1) + Km
t+1(yt+1 − Hµm

t+1)

"Optimal update"

We compute Bm
t+1 as follows

1. Cholesky decomposition VV T = Qt+1
2. Cholesky decomposition UUT = Qt+1 + HTRH
3. Compute Z = V TU
4. Compute singular value decomposition Z = PGFT

5. Compute Bm
t+1 = U−TFPTV T

Issue:
Computing step 4 is computationally demanding when Z is large

11



Computational issues - Computing weight matrix Bm
t+1

Recall:

xmt+1 = µm
t+1 + Bm

t+1(x̃
m
t+1 − µm

t+1) + Km
t+1(yt+1 − Hµm

t+1)

"Optimal update"

We compute Bm
t+1 as follows

1. Cholesky decomposition VV T = Qt+1
2. Cholesky decomposition UUT = Qt+1 + HTRH
3. Compute Z = V TU
4. Compute singular value decomposition Z = PGFT

5. Compute Bm
t+1 = U−TFPTV T

Issue:
Computing step 4 is computationally demanding when Z is large

11



Computational issues - Block update
Resembles domain localisation, but the motivation is different

C1 C2

Cb

CB



Computational issues - Block update

Resembles domain localisation, but the motivation is different

Cb

Db

Eb



Computational issues - Block update

Resembles domain localisation, but the motivation is different

Cb

Db

Eb



Computational issues - Block update

Resembles domain localisation, but the motivation is different

Cb

Db

Eb



Computational issues - Block update

Resembles domain localisation, but the motivation is different

Cb

Db

Eb



Computational issues - Block update

Resembles domain localisation, but the motivation is different

Cb

Db

Eb



Simulation examples - Aim

Aim:
Compare the optimal update and block update
▶ Computational demands
▶ Results

18



Simulation examples - Setup
▶ State vector xt constructed in a grid of size s × s

▶ x1 is Gaussian field, spatial correlation structure
▶ Forward function: Deterministic, smoothing around center node
▶ Vague prior for µ and Q. Same for all time steps
▶ Observations: local average, additive Gaussian noise

x1 x3 x5



Simulation examples - Setup
▶ State vector xt constructed in a grid of size s × s

▶ x1 is Gaussian field, spatial correlation structure
▶ Forward function: Deterministic, smoothing around center node
▶ Vague prior for µ and Q. Same for all time steps
▶ Observations: local average, additive Gaussian noise

y1 y3 y5



Simulation examples - Comparison of CPU-times
▶ Run both update procedures on grids of sizes

20 × 20, 30 × 30, . . . , 120 × 120 and 150 × 150.
▶ Additionally, run block update with 200 × 200, 240 × 240



Simulation examples - Stepwise comparison
▶ Run both update procedures on a 100 × 100-grid
▶ Block update: blocks of size 20 × 20
▶ The two ensembles are updated using the same forecast ensemble,

observations and model parameters

Optimal t = 3 Block



Simulation examples - Stepwise comparison
▶ Comparison along one cross section of the grid

t = 3



Simulation examples - Stepwise comparison

t = 1 t = 3 t = 5

24



Simulation examples - Comparing different simulations

▶ Run both update procedures for t = 5 iterations

Optimal Block



Simulation examples - Comparing different simulations

▶ Run both update procedures for t = 5 iterations

Optimal Block



Simulation examples - High-dimensional simulation example
▶ Run block update on a grid of size 240 × 240 for t = 10 iterations

t = 9



Simulation examples - High-dimensional simulation
▶ One cross section

t = 9



Closing remarks - Summary

New strategy
▶ Formulate model using precision matrices
▶ Sparse precision matrices
▶ Block update

Results
▶ Block update faster than optimal
▶ Block update provides essentially similar results

28


	Introduction
	Model-based EnKF
	Computational issues
	Simulation examples
	Closing remarks

