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where:

𝒚 = 𝐋𝑢 + 𝝐 with noise 𝝐~𝒩(0, Σ)

min
𝝁∈𝒫

ℐ 𝝁 |𝒚 ≔
1

2
𝒚 − 𝐋𝑢 Σ−1

2

DATA MISFIT WEAK MODEL

ℳ𝝁𝑢, 𝜓 = 0 ∀𝜓 ∈ 𝒴such that



VARIATIONAL DATA ASSIMILATION  :  REGULARIZED

The Reduced Basis Ensemble Kalman Method  – Variational Data Assimilation6

WEAK MODEL

ℳ𝝁𝑢, 𝜓 = 0 ∀𝜓 ∈ 𝒴such that

where:

+ 𝒯 𝝁

STABILIZATION

min
𝝁∈𝒫

ℐ 𝝁 |𝒚 ≔
1

2
𝒚 − 𝐋𝑢 Σ−1

2

DATA MISFIT

𝒚 = 𝐋𝑢 + 𝝐 with noise 𝝐~𝒩(0, Σ)

[TC91] 
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where:

the solution of the un-regularized 
problem can be obtained employing an 

iterative regularization methods;

𝝁k+1 = 𝝁k + 𝒢k(𝝁k, 𝒚)

min
𝝁∈𝒫

ℐ 𝝁 |𝒚 ≔
1

2
𝒚 − 𝐋𝑢 Σ−1

2

DATA MISFIT WEAK MODEL

ℳ𝝁𝑢, 𝜓 = 0 ∀𝜓 ∈ 𝒴such that

𝒚 = 𝐋𝑢 + 𝝐 with noise 𝝐~𝒩(0, Σ)

Landweber iterations

[KNS08] 

[Lan51] 



VARIATIONAL DATA ASSIMILATION  :  UNREGULARIZED
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where:

the solution of the un-regularized 
problem can be obtained employing an 

iterative regularization methods;
those can be implemented via

Local approaches (Newton’s type methods) 

Global approaches (Particles based methods)

min
𝝁∈𝒫

ℐ 𝝁 |𝒚 ≔
1

2
𝒚 − 𝐋𝑢 Σ−1

2

DATA MISFIT WEAK MODEL

ℳ𝝁𝑢, 𝜓 = 0 ∀𝜓 ∈ 𝒴such that

𝒚 = 𝐋𝑢 + 𝝐 with noise 𝝐~𝒩(0, Σ)
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We sample a particle ensemble of size 𝐽 from a prior 
distribution 𝜋0 and update their positions as follows:

𝝁0
(𝑗)
~ 𝜋0 ≔ 𝑒−𝒯(𝝁)

[ILS13]
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The Reduced Basis Ensemble Kalman Method  – The Ensemble Kalman Method7

We sample a particle ensemble of size 𝐽 from a prior 
distribution 𝜋0 and update their positions as follows:

𝝁0
(𝑗)
~ 𝜋0 ≔ 𝑒−𝒯(𝝁)

ii)  Compute the correlation matrices : 𝝁𝑛
𝑗

:

𝑃𝑛 ≔ sum 𝐋𝑢𝑛
𝑗

𝐋𝑢𝑛
𝑗
− 𝐋ത𝑢𝑛 𝐋ത𝑢𝑛 ∙ (𝐽 − 1)−1

𝑄𝑛≔ sum 𝝁𝑛
𝑗

𝐋𝑢𝑛
𝑗
− ഥ𝝁𝑛 𝐋ത𝑢𝑛 ∙ (𝐽 − 1)−1

⨂

⨂

⨂

⨂

For 𝑛 = 0,1,…

[ILS13]
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𝝁𝑛+1
(𝑗)

~𝜋0 ⋅ (𝑒
−ℐ 𝝁|𝒚 )𝑛+1

We sample a particle ensemble of size 𝐽 from a prior 
distribution 𝜋0 and update their positions as follows:

𝝁0
(𝑗)
~ 𝜋0 ≔ 𝑒−𝒯(𝝁)

For 𝑛 = 0,1,…

iii) Update each particle 𝝁𝑛
𝑗

in the ensemble:

𝝁𝑛+1
(𝑗)

= 𝝁𝑛
(𝑗)

+ 𝑄𝑛 Σ + 𝑃𝑛
−1 𝒚 − 𝐋𝑢𝑛

𝑗

[ILS13]
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The Reduced Basis Ensemble Kalman Method  – Parabolic Parametric PDEs9

PARABOLIC pPDEs :  SPACE-TIME CONSTRAINT

𝜕𝑡𝑢 𝒙, 𝑡; 𝝁 + ℱ𝝁𝑢 𝒙, 𝑡; 𝝁 = 0 with 𝒱 ↪ℋ ≡ ℋ′ ↪ 𝒱′ Gelfand triple

𝑢 𝒙, 0; 𝝁 − 𝑢0 𝒙, 𝝁 = 0

for any 𝒙 ∈ Ω ⊂ ℝ𝑑 and 𝑡 ∈ 𝐼 ≔ 0, 𝑇

for any 𝒙 ∈ Ω ⊂ ℝ𝑑
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න
𝐼

𝜕𝑡𝑢 𝒙, 𝑡; 𝝁 + ℱ𝝁𝑢 𝒙, 𝑡; 𝝁 , 𝑣 𝒙, 𝑡
ℋ
𝑑𝑡 = 0 ∀ 𝑣 𝒙, 𝑡 ∈ 𝐿2(𝐼, 𝒱)

𝑢 𝒙, 0; 𝝁 − 𝑢0 𝒙, 𝝁 , 𝜉(𝒙) ℋ = 0 ∀ 𝜉 𝒙 ∈ ℋ

PARABOLIC pPDEs :  SPACE-TIME CONSTRAINT

for any 𝒙 ∈ Ω ⊂ ℝ𝑑 and 𝑡 ∈ 𝐼 ≔ 0, 𝑇

for any 𝒙 ∈ Ω ⊂ ℝ𝑑

𝜕𝑡𝑢 𝒙, 𝑡; 𝝁 + ℱ𝝁𝑢 𝒙, 𝑡; 𝝁 = 0

𝑢 𝒙, 0; 𝝁 − 𝑢0 𝒙, 𝝁 = 0

to which corresponds the variational formulation:
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𝒴𝜓

PARABOLIC pPDEs :  SPACE-TIME CONSTRAINT

for any 𝒙 ∈ Ω ⊂ ℝ𝑑 and 𝑡 ∈ 𝐼 ≔ 0, 𝑇

for any 𝒙 ∈ Ω ⊂ ℝ𝑑
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න
𝐼

𝜕𝑡𝑢 𝒙, 𝑡; 𝝁 + ℱ𝝁𝑢 𝒙, 𝑡; 𝝁 , 𝑣 𝒙, 𝑡
ℋ
𝑑𝑡 = 0 ∀ 𝑣 𝒙, 𝑡 ∈ 𝐿2(𝐼, 𝒱)

𝑢 𝒙, 0; 𝝁 − 𝑢0 𝒙, 𝝁 , 𝜉(𝒙) ℋ = 0 ∀ 𝜉 𝒙 ∈ ℋ

𝒴𝜓

PARABOLIC pPDEs :  SPACE-TIME CONSTRAINT

for any 𝒙 ∈ Ω ⊂ ℝ𝑑 and 𝑡 ∈ 𝐼 ≔ 0, 𝑇

for any 𝒙 ∈ Ω ⊂ ℝ𝑑

𝜕𝑡𝑢 𝒙, 𝑡; 𝝁 + ℱ𝝁𝑢 𝒙, 𝑡; 𝝁 = 0

𝑢 𝒙, 0; 𝝁 − 𝑢0 𝒙, 𝝁 = 0

to which corresponds the variational formulation:

ℳ𝝁𝑢, 𝜓 𝒴
= 0 ∀𝜓 ∈ 𝒴

SPACE-TIME WEAK MODEL

that can be written as:

[UP14]
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NUMERICAL APPROXIMATION

find 𝑢ε ∈ 𝒳ε ⊂𝒳 such that ℳ𝝁𝑢ε, 𝜓𝑖 = 0 for all 𝜓𝑖 ∈ 𝒴ε ⊂ 𝒴

the infinite dimensional problem can be approximated by Petrov-Galerkin projection
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NUMERICAL APPROXIMATION

find 𝑢ε ∈ 𝒳ε ⊂𝒳 such that ℳ𝝁𝑢ε, 𝜓𝑖 = 0 for all 𝜓𝑖 ∈ 𝒴ε ⊂ 𝒴

the infinite dimensional problem can be approximated by Petrov-Galerkin projection

where 

𝒳ε :  trial space

𝒴ε :  test space must ensure proper stability

must ensure good approximation 
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NUMERICAL APPROXIMATION  :  REDUCED BASIS METHODS

find 𝑢ε ∈ 𝒳ε ⊂𝒳 such that ℳ𝝁𝑢ε, 𝜓𝑖 = 0 for all 𝜓𝑖 ∈ 𝒴ε ⊂ 𝒴

the infinite dimensional problem can be approximated by Petrov-Galerkin projection

where 

𝒳ε :  trial space

𝒴ε :  test space must ensure proper stability

must ensure good approximation 

Reduced Basis (RB) methods employ a set of pre-computed solutions 
to choose an optimal couple 𝒳ε, 𝒴ε .

[BHL93]

[HO08]
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We sample a particle ensemble of size 𝐽 from a prior 
distribution 𝜋0 and update their positions as follows:

[ILS13]
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i)   Compute the model solution for each particle 𝝁𝑛
𝑗

:

For 𝑛 = 0,1,…

𝑢𝑛
𝑗
∈ 𝒳 such that    ℳ

𝝁𝑛
𝑗 𝑢𝑛

𝑗
, 𝜓 = 0 ∀𝜓 ∈ 𝒴
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We sample a particle ensemble of size 𝐽 from a prior 
distribution 𝜋0 and update their positions as follows:

i)   Compute the model solution for each particle 𝝁𝑛
𝑗

:

For 𝑛 = 0,1,…

𝑢ε,𝑛
𝑗
∈ 𝒳ε such that ℳ

𝝁𝑛
𝑗 𝑢ε,𝑛

𝑗
, 𝜓𝑖 = 0 ∀𝜓𝑖 ∈ 𝒴ε
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We sample a particle ensemble of size 𝐽 from a prior 
distribution 𝜋0 and update their positions as follows:

ii)  Compute the correlation matrices : 𝝁𝑛
𝑗

:

𝑃𝑛 ≔ sum 𝐋𝑢𝑛
𝑗

𝐋𝑢𝑛
𝑗
− 𝐋ത𝑢𝑛 𝐋ത𝑢𝑛 ∙ (𝐽 − 1)−1

𝑄𝑛≔ sum 𝝁𝑛
𝑗

𝐋𝑢𝑛
𝑗
− ഥ𝝁𝑛 𝐋ത𝑢𝑛 ∙ (𝐽 − 1)−1

⨂

⨂

⨂

⨂

For 𝑛 = 0,1,…
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We sample a particle ensemble of size 𝐽 from a prior 
distribution 𝜋0 and update their positions as follows:

ii)  Compute the correlation matrices : 𝝁𝑛
𝑗

:

𝑃ε,𝑛 ≔ sum 𝐋𝑢ε,𝑛
𝑗

𝐋𝑢ε,𝑛
𝑗
− 𝐋ത𝑢ε,𝑛 𝐋ത𝑢ε,𝑛 ∙ (𝐽 − 1)−1

𝑄ε,𝑛≔ sum 𝝁𝑛
𝑗

𝐋𝑢ε,𝑛
𝑗
− ഥ𝝁𝑛 𝐋ത𝑢ε,𝑛 ∙ (𝐽 − 1)−1

⨂

⨂

⨂

⨂

For 𝑛 = 0,1,…
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We sample a particle ensemble of size 𝐽 from a prior 
distribution 𝜋0 and update their positions as follows:

For 𝑛 = 0,1,…

iii) Update each particle 𝝁𝑛
𝑗

in the ensemble:

𝝁𝑛+1
(𝑗)

= 𝝁𝑛
(𝑗)

+ 𝑄𝑛 Σ + 𝑃𝑛
−1 𝒚 − 𝐋𝑢𝑛

𝑗
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We sample a particle ensemble of size 𝐽 from a prior 
distribution 𝜋0 and update their positions as follows:

For 𝑛 = 0,1,…

iii) Update each particle 𝝁𝑛
𝑗

in the ensemble:

𝝁𝑛+1
(𝑗)

= 𝝁𝑛
(𝑗)

+ 𝑄ε,𝑛 Σ + 𝑃ε,𝑛
−1

𝒚 − 𝐋𝑢ε,𝑛
𝑗

THE REDUCED BASIS ENSEMBLE KALMAN METHOD

?
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We sample a particle ensemble of size 𝐽 from a prior 
distribution 𝜋0 and update their positions as follows:

For 𝑛 = 0,1,…

iii) Update each particle 𝝁𝑛
𝑗

in the ensemble:

𝝁𝑛+1
(𝑗)

≠ 𝝁𝑛
(𝑗)

+ 𝑄ε,𝑛 Σ + 𝑃ε,𝑛
−1

𝒚 − 𝐋𝑢ε,𝑛
𝑗

THE REDUCED BASIS ENSEMBLE KALMAN METHOD

!

min
𝝁∈𝒫

1
2
𝒚 − 𝐋𝑢 Σ−1

2 ≠ min
𝝁∈𝒫

1
2
𝒚 − 𝐋𝑢𝜀 Σ−1

2

Such an iteration would not converge to 𝝁OPT because
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We sample a particle ensemble of size 𝐽 from a prior 
distribution 𝜋0 and update their positions as follows:

For 𝑛 = 0,1,…

iii) Update each particle 𝝁𝑛
𝑗

in the ensemble:

𝝁𝑛+1
(𝑗)

= 𝝁𝑛
(𝑗)

+ 𝑄ε,𝑛 Σ + Γ𝜀,𝑛 + 𝑃ε,𝑛
−1

𝒚 − 𝜹𝜀,𝑛 − 𝐋𝑢ε,𝑛
𝑗

THE REDUCED BASIS ENSEMBLE KALMAN METHOD

where

𝜹𝜀,𝑛 ≔
1
𝐽
∙ sum 𝐋(𝑢ε,𝑛

𝑗
− 𝑢𝑛

𝑗
)

Γ𝜀,𝑛 ≔ 1
𝐽−1

∙ sum 𝐋(𝑢ε,𝑛
𝑗
− 𝑢𝑛

𝑗
) 𝐋(𝑢ε,𝑛

𝑗
− 𝑢𝑛

𝑗
)−𝜹𝜀,𝑛 𝜹𝜀,𝑛⨂ ⨂

[PMQ16] 
[Cal+18] 
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We sample a particle ensemble of size 𝐽 from a prior 
distribution 𝜋0 and update their positions as follows:

For 𝑛 = 0,1,…

iii) Update each particle 𝝁𝑛
𝑗

in the ensemble:

𝝁𝑛+1
(𝑗)

≈ 𝝁𝑛
(𝑗)

+ 𝑄ε,𝑛 Σ + Γ𝜀,0 + 𝑃ε,𝑛
−1

𝒚 − 𝜹𝜀,0 − 𝐋𝑢ε,𝑛
𝑗

THE REDUCED BASIS ENSEMBLE KALMAN METHOD

𝜹𝜀,0 ≔
1
𝐽
∙ sum 𝐋(𝑢ε,0

𝑗
− 𝑢0

𝑗
)

Γ𝜀,0 ≔ 1
𝐽−1

∙ sum 𝐋(𝑢ε,0
𝑗
− 𝑢0

𝑗
) 𝐋(𝑢ε,0

𝑗
− 𝑢0

𝑗
)−𝜹𝜀,0 𝜹𝜀,0⨂ ⨂

same 𝑢0
𝑗

used for 
training the RB model

where
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The Reduced Basis Ensemble Kalman Method  – Advection-Dispersion Problem14

ADVECTION-DISPERSION PROBLEM

𝜕𝑢

𝜕𝑡
− 𝝁 ∙ ∆𝑢 𝑡 + 𝒗 ∙ 𝛁𝑢 𝑡 = 0 on Ω ≔ (−1,+1)2 with 𝒗 =

+sin(𝜋𝑥1)cos(𝜋𝑥2)
−cos(𝜋𝑥1)sin(𝜋𝑥2)

𝑢 0 = 𝑢0

unknown

[Kär+18]

𝑢0
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ADVECTION-DISPERSION PROBLEM

𝜕𝑢

𝜕𝑡
− 𝝁 ∙ ∆𝑢 𝑡 + 𝒗 ∙ 𝛁𝑢 𝑡 = 0 on Ω ≔ (−1,+1)2 with 𝒗 =

+sin(𝜋𝑥1)cos(𝜋𝑥2)
−cos(𝜋𝑥1)sin(𝜋𝑥2)

we consider:

• 3 sensor locations

• 40 time-activations per sensor

• 𝑡 ∈ (0, 2.4)

• 𝝁 ∈ 1/50, 1/10

𝑢 0 = 𝑢0

𝑢0
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MODEL ORDER REDUCTION

considering a fine FE discretization as exact model

FE dofs spatial discretization  = 10100     (P2-P2 G)

FE dofs time discretization r = 240         (P1-P0 PG)

[Hec12]
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MODEL ORDER REDUCTION

considering a fine FE discretization as exact model

FE dofs spatial discretization  = 10100     (P2-P2 G)

FE dofs time discretization r = 240         (P1-P0 PG)

employing the weak-greedy-POD algorithm, we achieve 
relative error 𝜀 < 10−3 with 42 spatial basis functions

RB dofs spatial discretization  =  𝑁𝜀 (RB-RB G)

FE dofs time discretization r =  240         (P1-P0 PG)

[Gre12]
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MODEL ORDER REDUCTION

considering a fine FE discretization as exact model

FE dofs spatial discretization  = 10100     (P2-P2 G)

FE dofs time discretization r = 240         (P1-P0 PG)

employing the weak-greedy-POD algorithm, we achieve 
relative error 𝜀 < 10−3 with 42 spatial basis functions

RB dofs spatial discretization  =  𝑁𝜀 (RB-RB G)

FE dofs time discretization r =  240         (P1-P0 PG)

training time ~𝟐 min, speed up × 𝟐𝟓𝟎
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PARAMETER ESTIMATION : NOISE EFFECTS

we try to estimate the 𝝁⋆ = 1/25
from noisy observations of 𝑢(𝝁⋆)

we sample ensembles of size 𝐽 = 40
from the prior 𝜋0 = 𝑈 1/10, 1/50

we consider different relative noise 
magnitudes 𝜆max

½ (Σ)/ 𝐋𝑢(𝝁⋆) ∞

we replicate the analysis 64 times 
for each noise level 
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PARAMETER ESTIMATION : NOISE EFFECTS

results show a linear convergence 
when the exact FO model is employed

the error stagnates when the model
bias is not corrected in the RB-EnKM 

the adjusted RB-EnKM shows an error 
decay comparable with the FO one

the cost of the RB-EnKM is just ~4%
of the cost of the standard EnKM
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PARAMETER ESTIMATION  :  REDUCED BASIS SIZE

when the measurements bias is not 
corrected, the relative error is strictly 
dependent on the RB model accuracy

with the bias correction, the performances 
of the method are made independent on 
the RB size (at least for this problem)



OUTLINE
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CONCLUSIONS

SUMMARY :

- we introduced Reduced Basis solvers to improve the EnKM efficiency

- we adjusted the method to guarantee the robustness to model-biases

- we tested the method both on linear and non-linear 2D problems

OUTLOOK :

- the bias correction could be updated as the particles distribution evolves

- the approach could be extended to synchronous data assimilation problems 
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