
A SHADOWING-TYPE DATA 
ASSIMILATION METHOD FOR 

PARTIALLY OBSERVED 
SYSTEMS

Svetlana Dubinkina 
VU Amsterdam 

Joint work with Bart de Leeuw (CWI)     



SHADOWING LEMMA 

Let       be a flow (e.g. numerical discretisation) associated with 
a continuous dynamical system             : 

Shadowing lemma (A. Katok and B. Hasselblatt, 1995): There 
exists  the true orbit                 with                          , such that 

where            is an ε-pseudo-orbit, namely  
 
 
The Shadowing lemma guarantees the existence of a solution in 
a δ-neighbourhood of  

vn+1 = ϕtn(vn), for n = 0,…, N − 1, where vn ∈ ℛm

ϕtn
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SHADOWING APPROACH TO DATA ASSIMILATION

“The principle idea of shadowing-based data assimilation is to 
take observations of a trajectory (red dots) and to relax these 
onto a near-by trajectory (blue dots).” K. Judd and L. Smith 
(2001).

K. Judd and L. Smith (2001) 
J. Brocker and U. Parlitz (2001) 

K. Judd et al. (2008) 
T. Stemler and K. Judd (2009) 
H. Du and L. Smith (2014) 

x

y



ITERATIVE METHODS FOR SHADOWING

Define the function G as 

Find zeros of G by an iterative method  

Initiate the method at full observations 

, 

 

u(0) = y

yk = utrue
k + ξk, for 0 ≤ k ≤ N − 1, where ξk ∼ 𝒩(0, R)

utrue
n+1 = ϕtn(utrue

n ), for n = 0,…, N − 1

Gn := un+1 − ϕtn(un)

u( j+1) = u( j) + Δ( j)



EXISTING SHADOWING-BASED DA METHODS

Judd and Smith (2001); Du and Smith (2014) 

u( j+1) = u( j) + Δ( j), P := G′ (u( j))

3) Δ( j) = − PT(PPT)−1G(u( j))

1) Δ( j) = − γPTG(u( j))

2) Δ( j) = − PTΛ−1G(u( j)) Brocker and Parlitz (2001)

de Leeuw et al. (2018)

All these methods are initiated at a (proxy of) of full observations. 



SHADOWING-BASED DA FOR PARTIAL OBSERVATIONS

We use a regularized Gauss-Newton method to find a pseudo-
orbit 

The initial guess  consists of partial observations y and 
a background trajectory—a model trajectory started from an 
arbitrary initial guess.  

u(0) = 𝒴

u( j+1) = u( j) + Δ( j), where

Δ( j) = − ΣPT(PΣPT + αQ)−1G(u( j)) and P := G′ (u( j))

Y. Chen and D. Oliver (2013);  
Ebtehaj, A. M., M. Zupanski, G. Lerman, and E. Foufoula-Georgiou (2014) 
de Leeuw and S.D. (2022)



LOCAL CONVERGENCE AND TRUST REGION
➤ Theorem I: Under some conditions on the initial guess and a 

regularization parameter , the shadowing-based DA method 
converges locally to the solution manifold 

 

➤ Theorem II: Under some conditions, a shadowing-based estimate 
projected on the observation space remains in a ball centred at the 
observations and radius of the observation error. 
 
In practice: in order to fulfil the conditions of Theorem II, we need to 
choose a specific preconditioning  for the Gauss-Newton method 

α

| |un+1 − ϕtn(un) | | < ϵ, for n = 0,…, N − 1

Σ

Δ( j) = − ΣPT(PΣPT + αQ)−1G(u( j)) and P := G′ (u( j))



EXISTING SHADOWING-BASED DA METHODS

Judd and Smith (2001); Du and Smith (2014) 

u( j+1) = u( j) + Δ( j), P := G′ (u( j))

3) Δ( j) = − PT(PPT)−1G(u( j))

4) Δ( j) = − ΣPT(PΣPT + αQ)−1G(u( j))

1) Δ( j) = − γPTG(u( j))

2) Δ( j) = − PTΛ−1G(u( j)) Brocker and Parlitz (2001)

de Leeuw et al. (2018)

All the methods (1)—(4) converge to the solution manifold. 

Choosing an appropriate  in (4) leads to a good estimation of the true 
solution.

Σ

de Leeuw and S.D. (2022)



THE SHADOWING-BASED DA METHOD WITH PARTIAL OBSERVATIONS: NUMERICAL EXPERIMENT 

We observe every 2nd variable of the Lorenz 96 model every 6 hours over 
25 days. Variance of the observation error is 8.

Gn := un+1 − ϕtn(un)
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H is the observation operator  
that projects an estimate onto  
the observation phase space



ERROR WITH RESPECT TO THE TRUE SOLUTION
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H is the observation operator  
that projects an estimate onto  
the observation phase space

 is an operator that projects  
an estimate onto  
the “non-observed” phase space

H⊥



COMPARISON TO OTHER DA METHODS

We compare the shadowing-based DA method to a weak 
constraint variational method and to a Pseudo-orbit DA method. 

We plot error with respect to the true solution over time.



ASSIMILATION IN THE UNSTABLE SUBSPACE
➤ Recent efforts to improve speed and reliability of data 

assimilation specifically address the partitioning of the tangent 
space into stable, neutral, and unstable subspaces corresponding 
to Lyapunov vectors associated with negative, zero, and positive 
Lyapunov exponents, respectively: 4DVAR-AUS, projected 
ensemble Kalman filter 

A. Trevisan, M. D'Isidoro, and O. Talagrand (2010);  
L. Palatella, A. Carrassi, and A. Trevisan (2013);  

C. Gonzalez-Tokman and B. R. Hunt (2013);  
K. J. H. Law, D. Sanz-Alonso, A. Shukla and A. M. Stuart (2016)  

➤ A dimension of the unstable subspace is smaller than a 
dimension of the model: 24 vs 14724 for a QG model (R. Rotunno 
and J.-W. Bao 1996)



PROJECTED SHADOWING-BASED DA METHOD

Motivated by these works, we propose a new method for 
shadowing-based data assimilation that utilises distinct 
treatments of the dynamics in the stable and nonstable (neutral 
and unstable) directions (B. de Leeuw et al, 2018).  

Novel projected shadowing-based DA method: 

➤ We construct projection operators onto the stable and 
nonstable subspaces. 

➤ In the nonstable subspace, we perform (expensive) 
shadowing-based DA that gives us a very accurate estimate. 

➤ In the stable subspace, we decrease error by means of 
synchronisation to that accurate estimate. 



SYNCHRONISATION IN DATA ASSIMILATION

Research on synchronisation of chaos indicates that  

➤ when partial observations are sufficient to constrain the 
unstable subspace,  

➤ an orbit of a chaotic dynamical system can be made to 
converge exponentially in time to a different, driving orbit.  

(provided exponential dichotomy)  

Pecora and Carroll (1990);  
Pecora et al. (1997); 

Boccaletti et al. (2002)



SYNCHRONISATION OF THE LORENZ 96 MODEL
➤ We consider the Lorenz 96 model (36 variables). It has 13 positive Lyapunov exponents. 

➤ The true solution is partially observed (noise free): we have access to the true solution 
projected onto the non-strongly stable subspace of dimension p. 

➤ Note that the dimension of the nonstable subspace is 14.

p=12

p=13

p=14

p=15

We plot  

➤ the difference 
between the true 
solution and the 
synchronisation 
approximation in 
the infinity norm  

➤ as a function of time 

➤ for different p 



We compare the projected shadowing-based DA method to a weak 
constraint variational method.  

We consider the Lorenz 96 model. The projection dimension is 25. 

We plot error with respect to the true solution over time.

NUMERICAL EXPERIMENT



CONCLUSIONS
➤ We have developed a shadowing-based DA method specifically 

for partial observations. 

➤ The method converges to the solution manifold. Moreover, the 
solution projected onto the observation space is within a ball 
centred at the observation with radius of the observation error. 

➤ We extended the method to nonstable subspace. 

➤ We have shown numerically that the (projected) shadowing-
based DA method provides a good estimation of the true 
solution. Moreover, it outperforms both WC4DVar and PDA. 
 
B. de Leeuw and S.D., "Shadowing-based data assimilation method for 
partially observed models", SIADS (2022).
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