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?“Hybrid" is probably overused — this is an ensemble Kalman-like method with
some analytical gradients (hence hybrid).



Parameter estimation

e Estimate the spatially distributed coefficients of the pde for
flow and transport in porous medium from observations of
rates at well locations (e.g. inject water to displace oil, inject
COy for sequestration, transport of pollutants in
groundwater).

e Need to specify a prior pdf for model parameters — often use
Gaussian.

e Fixing hyperparameters of the prior at incorrect values may
result in failure to assimilate data and failure to adequately
represent uncertainty.
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Consequence of bad prior model
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true In K realizations from “bad” prior

Two injectors and six producers. All rates fixed. Only measure
water cut.
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Consequence of bad prior model — posterior predictive distribu-

tion
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Consequence of bad prior model — posterior predictive distribu-
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Only difference in the priors is the orientation of the anisotropy.
Much better predictability if the prior is chosen appropriately.
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Geometric anisotropy'

Assume stationarity and geometric anisotropy

cou(imy. my) = o2F <(x X TATA(x — X/)>

2
where

A=

1 0] [cos(d)) sin(qﬁ)]
0 «a| |—sin(¢) cos(o)

'Shen and Gelfand (2019)
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Non-centered reparameterization?

Allow uncertainty in the prior covariance.

Instead of using
hyperparameters

m7 ¢7 IO7 a
where m are our usual parameters, we use

hyperparameters
,—/\
z, ¢,p

1/2
where m = my,, + Cm/ z

m are physical model parameters, z are standard normal iid
random variables.
2Papaspiliopoulos et al. (2003); Chada et al. (2018)
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Initial ensemble — hierarchical model

Permeability
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The initial ensemble of realizations can include many different
orientations and correlation ranges.
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Data assimilation

Posterior pdf for non-centered parameterization

plxld) o exp (50 — glm(x)) 7 C; (e — glm(x)))
X exp <—;(X )T Y (x - x)) :

Approximate sampling from posterior by minimization of cost
function

xPost = argmin [ d° — g(m(x)) — €21 + o = x"|2 .
X X
where € ~ N[0, C4] and x* ~ N[x, C].
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Data assimilation — Iterative ensemble smoother

For history matching, we may use an IES to approximately sample:

Sxpr1 = —Dxg Ax} C7H(xe — x¥)

“Kalman gain matrix”

— Axy Ad] (Cq+ AdpAd])

X (g(mg) + € — d° — AdpAxf Col(xp — x*)>

(Xe=Xy)
(N-1)

where x = (z, ¢, p, ) and Axp = and similar for Adj.
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Fluid flow example




Model and data
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Two injectors and six producers. All rates fixed. Only measure

water cut.
True permeability field is anisotropic.
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History matching hierarchical model with standard IES

prior

posterior

Prod 0 Prod 1 Prod 3

Improvement from history matching with IES is small. lterative
ensemble filter does not work well on this application.
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History matching hierarchical model with standard IES

Posteriori predictions -- Prod4

. 70000 ge
0.6 60000
05 _ 50000 ° o
0.4 gaoooo aagE g 8-, .
0.3 530000 84 E§§5;§§§
0.2 g
20000
0.1
e $$$$$$$$
0.0
0 10 20 30 40 50 60 70 80 123456789 101112 1314151617 1819 20 21
Posteriori (Prod4) Reduction in data mismatch

A standard iterative ensemble smoother is unable to assimilate the
data for the 2D hierarchical model.
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One reason for the failure of standard IES

5
10.0 4
75
3
5.0
2
25
(X S s—— |
0 5 10 15 20
[
12
10
@ 10.0 1 o 10.0 = 06 100
08
Q0 sy u 25 | 0.4 75
0.2 06
g 5.0 J. " 5.0 02 5.0
lﬂ 04
n 25 I. u m 00 2548 L] 0.0 25 =
- u n | | 0.2
= ool B m - ool Lm o2 0.0
(% 0 5 10 15 20 || g [ [ 10 15 20 0 5 10 15 20 [ 0.0
L-o0a
N, = 100 Ne = 200 Ne = 800

Comparison of purely ensemble based estimates of the sensitivity of
observation 27 to the values of z (top row) to the correct value for
realization 1 (bottom row). Note the difference in orientation.
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Data assimilation — hybrid-1ES

Proposing a hybrid IES approach,
Sxep1 = —(x0 — x*) — GeGF (Ca + GG GF) ™
x (g(me) + € —d — Go(xe — x¥))
but instead of G =~ AdgAX[l we use

Gt =V, (m") - Vm(g") =V.(m") G} (1)

with G, ~ AdpAm; .

14/22



Data assimilation — hybrid-1ES3

Substituting G = G,, M, into the update expression with ensemble
representation of G, results in a hybrid data assimilation approach

ox = —(x — x")
-1
— CMT(Am) " Ad" (Cd + Ad (Am) M GME (Am) T AdT)

x (g(m) t e —d— Ad(Am)  M(x — x*))

Note: each ensemble member has its own Kalman gain matrix since
_ |12 9 1/2
M= [ (5Ci)z] 2)

where 0 denotes the hyperparameters.

*Qliver (2022)
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Data assimilation with the hybrid-1ES

prior

posterior

16/22



prior

posterior

All matched well except Producer 3
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Samples from the prior and corresponding samples from the

posterior
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Convergence
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Reduction in squared mismatch with observed (not perturbed)
data. Expected value at convergence is 240.
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Hyperparameters

Red dashed line shows true parameter, blue is prior distribution,
orange is posterior distribution.
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Short explanation of the reason for failure
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Comparison of purely ensemble based estimates of the sensitivity of
observation 27 to the values of z (top row) to hybrid estimates for
realization 1 (bottom row).
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1. Need to develop prior models that are more “forgiving” of
model imperfections
e Better able to assimilate data
e Reduce need to manually rebuild models
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Need to develop prior models that are more “forgiving” of
model imperfections

e Better able to assimilate data

e Reduce need to manually rebuild models
Hierarchical models allow for uncertainty in the parameters
that characterize the prior

o Greater ability to match data than a “bad” prior

e Greater non-linearity and more difficult to history match

e lterative ensemble smoothers will often fail
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1.

Need to develop prior models that are more “forgiving” of
model imperfections

e Better able to assimilate data

e Reduce need to manually rebuild models
Hierarchical models allow for uncertainty in the parameters
that characterize the prior

o Greater ability to match data than a “bad” prior

e Greater non-linearity and more difficult to history match

e lterative ensemble smoothers will often fail
Hybrid-IES for hierarchical models

e Much better at assimilating data

e Not limited by Gaussian assumptions

e Currently slow because of cost of computing C/2 for each

1/2

ensemble member. Consider using C~*/<, which may be sparse

(Roininen et al., 2019).
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