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Who we are: A subset of Scientific COmpUting Team (SCOUT)
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Background

Graphical Sparse Precision Matrix Estimation

The Ensemble Information Filter

Examples
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A stochastic spatio-temporal dynamical model

The stochastic heat equation

with SPDE

∂tu = α∇2u+ σdWt
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The EnKF solution (Evensen, 1994; Burgers, Van Leeuwen, and Evensen, 1998)

Truth at time=t

Uncertain measurement, x=50, y=50
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EnKF, all is well?

Field update
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The EnKF localisation solution

Illustrated with local analysis type localisation.
(Anderson, 2003; Evensen, 2003; Ott et al., 2004; Hunt, Kostelich, and Szunyogh, 2007)

Involves tuning of hyperparameters (functional form and parameters of tapering function).
Works on existing (implicit) covariance or residuals - only weakens the direct connection between
(i, j) and (k, l), but still allow direct connections.

Tapering function
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Reparametrisation: The computational-statistics mindset

Question
Is there a way to reparametrise the problem to avoid constrained estimation?

Examples:

Estimate logit-transformed probability
instead of constrained probability.

The link-functions in Generalized Linear
Models

Constant information parametrisation
instead of RMHMC
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Constrained VS unconstrained

for 0 < p < 1 do

arg min
p

−
∑
i

yi log(p) + (1− yi) log(1− p)

VS

given transform h(θ) =
1

1 + e−θ
do

arg min
θ

−
∑
i

yi log (h(θ)) + (1− yi) log (1− h(θ))
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Reparametrisation for spatio-temporal models

Question

Is there such a reparametrisation? What are we actually looking for in a
reparametrisation?

Temporary answer with some guidance

Dependence is local! If this could be baked into the parametrisation pre estimation then
this would be (highly) beneficial.

Currently, with the ordinary covariance parametrisation of the Gaussian and corresponding
likelihood-estimate, every parameter is potentially connected with all other parameters.
There is initially no preference on ”local connections”.

Seek parametrisation with ”preference” for local connections/dependence
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Formalising connectivity and locality

A graph G = (V , E)

Vertices V = {1, . . . ,d}
Edges E = {(i, j)} so that (i, j) ∈ E if i and j
are directly connected

Neighbours: ne(i) = {j; (i, j) ∈ E}

In the example above

V = {1, 2, 3, 4}
E = {(1, 2), (2, 3), (2, 4), (3, 4)}
ne(1) = {2}, ne(2) = {1, 3, 4}

1

2 3

4

Markov Random Field (MRF)
x ∈ Rd is MRF w.r.t. a graph G = (V, E),
V = 1, . . . ,d if Markov property

xi ⊥ x−(ne(i),i)|xne(i), holds ∀i ∈ V

In the example we would require that

x1 ⊥ (x3, x4)|x2, x3 ⊥ x1|(x2, x4), x4 ⊥ x1|(x2, x3)
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Markov properties

Keep modelling at a local level...

... by using Markov properties

E[xi|x−i] = E[xi|xne(i)]

and even stronger that

xi|x−i = xi|xne(i)
⇕

xi ⊥ x−(i,ne(i)) = xi|xne(i)
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Gaussien Markov Random Fields (GMRF)

Gaussian Markov Random Field (Rue and Held, 2005)
A random vector x ∈ Rd is a Gaussian Markov Random Field with respect to the graph
G = ({1, . . . ,d}, E), with mean µ and SPD precision matrix Λ if

p(x) = (2π)−
d
2

√
|Λ| exp

(
−1

2
(x− µ)⊤Λ(x− µ)

)
and

Λi,j ̸= 0 ⇔ (i, j) ∈ E∀i ̸= j.

Notice that connectivity and local dependence is directly specified through the non-zero
elements of the precision matrix. No other constraints needed.

12/51



Gaussien Markov Random Fields (GMRF)

Gaussian Markov Random Field (Rue and Held, 2005)
A random vector x ∈ Rd is a Gaussian Markov Random Field with respect to the graph
G = ({1, . . . ,d}, E), with mean µ and SPD precision matrix Λ if

p(x) = (2π)−
d
2

√
|Λ| exp

(
−1

2
(x− µ)⊤Λ(x− µ)

)
and

Λi,j ̸= 0 ⇔ (i, j) ∈ E∀i ̸= j.

Notice that connectivity and local dependence is directly specified through the non-zero
elements of the precision matrix. No other constraints needed.

12/51



GMRF parametrisation matters: Estimation

Connectivity and Markov properties implied by the precision matrix.

Unconstrained optimisation (ML-estimation)

Massively important for estimation: Spurious correlations disappear.

Λ =



Λ11 Λ12 0 · · · · · · 0
Λ21 Λ22 Λ23 0 · · · · · · 0
0 Λ32 Λ33 Λ34 0 · · · · · · 0
...

. . .
...

0 · · · · · · 0 Λd−2,d−3 Λd−2,d−2 Λd−2,d−18 0
0 · · · · · · 0 Λd−1,d−2 Λd−1,d−1 Λd−1,d

0 · · · · · · 0 Λd,d−1 Λd,d


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GMRF parametrisation matters: Inversion

Σ =

[
ΣAA ΣAB

ΣBA ΣBB

]
, Λ = Σ−1

Covariance parametrisation

Convenient for working with marginal
distributions of x

E [Ax+ b] = Aµ+ b

Var [Ax+ b] = AΣA⊤

Not for conditional distributions (requires
matrix inversion, e.g. Kalman filter).

Precision parametrisation

Convenient for working with conditional
distributions of x

E[xi|x−i] = µi − 1
Λi,i

∑
j ̸=i Λi,j(xj − µj)

Prec(xA|x−A) = ΛA,A

Corr(xi, xj|x−ij) = − Λi,j√
Λi,iΛj,j

i ̸= j
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Autoregressive (1) example

1 2 3 · · · T

xt = ϕxt−1 + ϵt, x1 ∼ N
(
0,

1

1− ϕ2

)
, ϵt ∼ N (0, 1)

Covariance parametrisation...

... is dense!

Σ =

B(1, 1) · · · B(1, T)
...

. . .
...

B(T, 1) · · · B(T, T)

 , B(i, j) =
ϕ|i−j|

1− ϕ2

Precision parametrisation...

... is sparse!

Λ =


1 −ϕ
−ϕ 1 + ϕ2 −ϕ

. . .
. . .

. . .
−ϕ 1 + ϕ2 −ϕ

−ϕ 1


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The Information Filter (Moore and Anderson, 1979)

Employs the canonical parametrization of the multivatiate Gaussian:
ν = Σ−1µ,Λ = Σ−1

Predict step

<Non-Beautiful-Equations>

Update step

νt|t = νt|t−1 + H⊤
t Λytyt

Λt|t = Λt|t−1 + H⊤
t ΛytHt

16/51



The Information Filter (Moore and Anderson, 1979)

Employs the canonical parametrization of the multivatiate Gaussian:
ν = Σ−1µ,Λ = Σ−1

Predict step
<Non-Beautiful-Equations>

Update step

νt|t = νt|t−1 + H⊤
t Λytyt

Λt|t = Λt|t−1 + H⊤
t ΛytHt

16/51



The Information Filter (Moore and Anderson, 1979)

Employs the canonical parametrization of the multivatiate Gaussian:
ν = Σ−1µ,Λ = Σ−1

Predict step
<Non-Beautiful-Equations>

Update step

νt|t = νt|t−1 + H⊤
t Λytyt

Λt|t = Λt|t−1 + H⊤
t ΛytHt

16/51



Extension to the ensemble variant?

Sample from belief
x(i)t−1|t−1 ∼ N

(
µt−1|t−1,Λt−1|t−1

)
i = 1, . . . , n

Predict
x(i)t|t−1 = g(x(i)t−1|t−1)

Estimate
Using sample {x(i)t|t−1}

n
i=1 estimate µ̂t|t−1 and Λ̂t|t−1 w.r.t. graph G

Update
ν̂t|t−1 = Λ̂t|t−1µ̂t|t−1

ν̂t|t = ν̂t|t−1 + H⊤
t Λytyt

Λ̂t|t = Λ̂t|t−1 + H⊤
t ΛytHt
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Recapture

Spatio-temporal models leads to difficulties for ensemble algorithms due to spurious
correlations

We want to model at a local level, leads naturally to Markov properties. Can we do a
reparametrisation?

Magically, for GMRF, the precision matrix is sparse under Markov assumptions

Reparametrisation in the Kalman filter leads to the Information filter, having extremely
easy additive updating

Bonus: Newton optimisation in the canonical parametrisation leads to natural gradients
(ml) or Fisher scoring (stats). Gradients with optimality properties.

Extension of the information filter to an ensemble variant is not straight forward.
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The Ensemble Information Filter
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The sample covariance estimate...

Σ̂ =
1

n− 1

∑
i

(xi − x)(xi − x)⊤

Positive properties

A small scaling away from the Gaussian
maximum-likelihood estimate (AUMVE)

Distribution independent and unbiased

For Kalman filter, there is no need for explicit
calculation (Rp×p). Use a centred ensemble (Rn×p)
for updates (in ensemble space)

Negative properties

Unstable, and even singular for
n < p.

Inefficient in the non-asymptotic
case

Does not employ information on
locality known pre-estimation
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(Stein-type) shrinkage of the covariance estimator

We employ the Ledoit-Wolf shrinkage estimator (Ledoit andWolf, 2004)

Σ̂T = (1− λ)Σ̂+ λT

Targets to fix stability, singularity and efficiency.

In general...

Choice of objective

Choice of target matrix, or shrinkage in
general

Computationally intensive with cross
validation

Specifics of what we employ

The Frobenius norm ||Σ− Σ̂T||fb
The SCV diagonal T = diag

(
Σ̂
)

Asymptotic optimality results for
shrinkage factor λ̂ (Touloumis, 2015)
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The Stein-type covariance shrinkage estimate: In high dimensions
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Asymptotic Stein-type shrinkage

Very smart!

1. Non-parametric model with loose moment conditions

2. Find exact solution, λ̂, in terms of (unknown) trace-expectations

3. Omit (asymptotically) negligible terms and find consistent estimators for others

4. Find efficient ways to calculate consistent estimators for big p small n

So smart that it has recently been proposed applied with the EnKF: Nino-Ruiz, Guzman,
and Jabba (2021)!

Lacks the informed structure of locality→ shrinks off-diagonal elements to zero
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The sparsity of the precision. Built-in graph and Markov order

The precision matrix may intrinsically hold such knowledge!

But can we estimate the precision from data?

Must match the ease of estimation as the sample covariance matrix...

... and possible to use with numerical linear algebra. Not enough memory to hold a
dense p× pmatrix

2008 Graphical lasso: L1 penalized maximum likelihood estimate over SPD matrices
(Friedman, Hastie, and Tibshirani, 2008)

2010 -> Column-by-column methods (Yuan, 2010; Cai, Liu, and Luo, 2011)
2017 Tuning Intensive Graph Estimation and Regression (TIGER and EPIC) (Zhao and Liu,

2014; Liu andWang, 2017)
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Precision matrix estimation with respect to a graph

The algorithms estimate the graph through Lasso-type algorithms (L1-penalization)

... but we already know G!

This problem has received little attention, but solutions can be found in e.g. (Hastie et al.,
2009; Zhou et al., 2011)

Constrained Gaussian maximum likelihood estimation. Iterative algorithms, requiring the
Gaussian likelihood.

Thankfully, Le and Zhong (2022) just came up with exactly what we need

Non-parametric precision matrix estimation with respect to a known graphical
structure
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SPD precision matrix estimation with respect to a graph

The method of Le and Zhong
(2022)

Column-by-column sub-sample
covariance estimate inversion

Sub-sample covariance
estimate blocks identified due to
the knowledge of the graph G

Pitfalls

Not necessarily positive definite

Not necessarily symmetric

Add some ingredients

The efficient asymptotic shrinkage of Touloumis
(2015)

Symmetry conversion: Λ̂ = 1
2

(
Λ̃+ Λ̃

⊤)
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GraphSPME: Graphical Sparse Precision Matrix Estimation

Open sourced at https://github.com/equinor/GraphSPME
Paper at https://arxiv.org/abs/2205.07584

Eigen

C++

header-only

pybind11

Rcpp

Python

PyPi

R

CRAN

1 from graphspme import prec_sparse,
cov_shrink_spd

2 import numpy as np
3 from scipy import sparse
4 def rar1(T, phi):
5 ...
6 # Sample data
7 n, p, psi = 100, 100, 0.6
8 x = np.tile(rar1(p,psi), (n,1))
9 # Estimate covariance
10 Sigma = cov_shrink_spd(x)
11 # Estimate precision
12 diagonals = [[1]*p,[1]*(p-1),[1]*(p-1)]
13 G = sparse.diags(diagonals, [0, -1, 1], format=

"csr")
14 Prec = prec_sparse(x, G)
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AR1 estimation results
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Recapture

The sample covariance estimate is easy to compute and numerically tractable for the
EnKF, but is typically not the best possible estimator (singular and has high variance)

A typical remedy is to use shrinkage, giving SPD estimates. But does not utilize
information of sparsity

GraphSPME combines the method of Le and Zhong (2022) for precision estimation w.r.t.
a graph, with asymptotic shrinkage methods Touloumis (2015) to ensure SPD estimates.
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Background

Graphical Sparse Precision Matrix Estimation

The Ensemble Information Filter

Examples
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The Ensemble Information Filter

Sample from belief
x(i)t−1|t−1 ∼ N

(
µt−1|t−1,Λt−1|t−1

)
i = 1, . . . , n

Predict
x(i)t|t−1 = g(x(i)t−1|t−1)

Estimate
Using sample {x(i)t|t−1}

n
i=1 estimate µ̂t|t−1 and Λ̂t|t−1 w.r.t. graph G (using GraphSPME)

Update
ν̂t|t−1 = Λ̂t|t−1µ̂t|t−1

ν̂t|t = ν̂t|t−1 + H⊺
t Λytyt

Λ̂t|t = Λ̂t|t−1 + H⊺
t ΛytHt
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Numerical black magic for scalability

The Cholesky decomposition LL⊤ = Λ is computationally efficiently retrieved due to
sparsity.

Computing x = µ+ L−⊤z by back-substitution is not more costly than Lz as L is
triangular.

Solving a sparse linear system likeΛµ = η is efficiently done using either e.g. Cholesky
decomposition or LU factorization whenΛ can be held in memory, or by sparsity aware
conjugate gradient whenΛ is too large to be held in memory.

sparse_prec efficiently estimates a sparse precision matrix according to the
GraphSPME algorithm.

Λ̂ is guaranteed to be symmetric positive definite by the GraphSPME algorithm, and a
solution to the mean-precision parametrisation thus always exists, furthermore the
covariance matrix may in principle be retrieved.
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Implementation

Examples at https://github.com/equinor/Enkf-Workshop-2022

Generally easy to implement, but requires a sparse matrix library with corresponding sparse
linear solvers.

Eigen/Sparse

C++

scipy.sparse

Python

Matrix

R
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AR1 updates
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Random field updates, n = 200 vs n = 10000

0

1

2

3

4

0 500 1000 1500 2000 2500
state element

D
iff

er
en

ce
: p

os
te

rio
r 

vs
 p

rio
r

Update: Ensemble Information Filter

−1

0

1

2

3

4

0 500 1000 1500 2000 2500
state element

D
iff

er
en

ce
: p

os
te

rio
r 

vs
 p

rio
r

Update: Ensemble Kalman Filter

row

co
lu

m
n

10

20

30

40

10 20 30 40

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

row

co
lu

m
n

10

20

30

40

10 20 30 40

−1

0

1

2

3

4

35/51



Random field updates, n = 200 vs n = 10000
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Recapture

GraphSPME allows the extension to the Ensemble Information Filter.

The numerical linear algebra relies heavily on smart algorithms for sparse matrices and
linear solvers.

Filtering updates are much less noisy than for that of the EnKF, and seems to solve the
problem of localisation without requiring tuning of arbitrary kernels.

36/51



Recapture

GraphSPME allows the extension to the Ensemble Information Filter.

The numerical linear algebra relies heavily on smart algorithms for sparse matrices and
linear solvers.

Filtering updates are much less noisy than for that of the EnKF, and seems to solve the
problem of localisation without requiring tuning of arbitrary kernels.

36/51



Recapture

GraphSPME allows the extension to the Ensemble Information Filter.

The numerical linear algebra relies heavily on smart algorithms for sparse matrices and
linear solvers.

Filtering updates are much less noisy than for that of the EnKF, and seems to solve the
problem of localisation without requiring tuning of arbitrary kernels.

36/51



Background

Graphical Sparse Precision Matrix Estimation

The Ensemble Information Filter

Examples

37/51



AR1, strong dependence
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AR1: ϕ = 0.9

39/51



AR1, middle dependence
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AR1: ϕ = 0.6
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AR1, no dependence, noise
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AR1: ϕ = 0.0
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Stochastic heat equation: Pure state estimation
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Stochastic heat equation: Combined parameter-state estimation

∂tu = α∇2u+ σdWt, (α, σ) are unknown and must be estimated.

Have not yet started to think about the joint estimation problem.

In principle, possible to do in the same way as for EnKF (assume additive and specify a
fully connected graph).

Perhaps more elegant with the two-step estimation procedure e.g. when using the
Laplace approximatin to integrate out a latent state.
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Full recap

Filtering algorithms needs to be informed on locality to avoid noisy updates due to
n << p.

A natural assumption for spatio-temporal models is assumptions of Markov properties.

For Gaussian Markov Random Fields, the precision matrix is sparse. The corresponding
information filter utilizes this.

We allow the extension to the Ensemble Information Filter by creating GraphSPME:
graphical sparse precision matrix estimation

The filtering updates from the ensemble information filter seem to be smooth and
comparatively without noise (information efficient). The method is free of tuning and
arbitrary measures of distance.
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Questions?
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