A New Look at the Ensemble Kalman Filter: Optimization and Duality Perspectives

C.G. Krishnanunni, J. Wittmer, H. Nguyen, and T. Bui-Thanh

Probabilistic and High Order Inference, Computation, Estimation, and Simulation (Pho-Ices)

Department of Aerospace Engineering and Engineering Mechanics The Oden Institute for Computational Engineering and Sciences The University of Texas at Austin

EnKF Workshop 22, May 30 to June 2, 2022

Acknowledgements

We appreciate the support from:

- DOE
- NSF
- UT-Portugal

Tan Bui ((The Oden∣	Institute)	
-----------	------------	------------	--

Behind the Scence

Left to right: A. Myers, C.G. Krishnanunni, J. Wittmer, H. Nguyen

Tan Bui (The Oden Institute)	Tan Bui 🛛	(The Oden	Institute)	
------------------------------	-----------	-----------	------------	--

Pho-Ices Group

Duality and Optimization view of EnKF 3/25

Seismic wave propagation \Box

With C. Burstedde, O. Ghattas, J. R. Martin, G. Stadler, and L. Wilcox

$$\frac{\partial \boldsymbol{E}}{\partial t} = \frac{1}{2} \left(\nabla \boldsymbol{v} + \nabla^T \boldsymbol{v} \right),$$
$$\boldsymbol{v} \frac{\partial \boldsymbol{v}}{\partial t} = \nabla \cdot (\mathbf{C} \boldsymbol{E}) + \boldsymbol{f}$$

Strain-velocity formulation

1

- I: fourth-order identity tensor,
- I: second-order identity tensor,
- f: external volumetric forces,
- C: four-order material tensor.

Inverse problem statement

- Earth surface velocity at given locations is recorded
- Infer the wave velocities $c_s=\sqrt{\mu/\rho}$ and $c_p=\sqrt{\left(\lambda+2\mu\right)/\rho}$

Animated by Greg Abram

- E: strain tensor,
- v: velocity vector,
- ρ : density,
- e_i : *i*th unit vector,

Tan Bui (The Oden Institute)

Pho-Ices Group

Duality and Optimization view of EnKF 4 / 25

An example of global seismic inversion

with Burstedde, C., Ghattas, O., Martin, J., Stadler, G., and Wilcox

- inversion field: c_p in acoustic wave equation
- prior mean: PREM (radially symmetric model)
- "truth" model: S20RTS (Ritsema et al.), (laterally heterogeneous)
- Piecewise-trilinear on same mesh as forward/adjoint 3rd order dG fields
- dimensions: 1.07 million parameters, 630 million field unknowns
- Final time: T = 1000s with 2400 time steps
- A single forward solve takes 1 minute on 64K Jaguar cores

Uncertainty quantification

Details in:

- Bui-Thanh, T., Burstedde, C., Ghattas, O., Martin, J., Stadler, G., and Wilcox, L.C., *Extreme-scale UQ for Bayesian inverse problems governed by PDEs*, ACM/IEEE Supercomputing SC12, Gordon Bell Prize Finalist, 2012.
- Bui-Thanh, T., Ghattas, O., Martin, J., and Stadler, G., A computational framework for infinite-dimensional Bayesian inverse problems. Part I: The linearized case, SIAM Journal on Scientific Computing, 35(6), pp. A2494–A2523, 2013.

1 Optimization-based Ensemble Kalman Inversion

2 EnKF from Duality

Tan Bui	(The Oden	Institute)	
---------	-----------	------------	--

PDE-constrained Inverse problem: Summary

Given observations of the form
$$y = \mathbb{G}(u) + \eta$$

$$-\nabla \cdot (e^u \nabla w) = 0 \text{ in } \Omega$$

$$-e^u \nabla w \cdot \mathbf{n} = Bi w \text{ in } \partial \Omega \setminus \Gamma_R$$

$$-e^u \nabla w \cdot \mathbf{n} = -1 \text{ on } \Gamma_R$$

Duality and Optimization view of EnKF 8 / 25

EnKF: A Recap

State estimation for dynamical system

$$u_{n+1} = \mathbb{M}(u_n)$$
$$y_{n+1} = Hu_{n+1} + \eta_{n+1}$$

		Duality and Optimization view of EnKF
Tan Bui (The Oden Institute)	Pho-Ices Group	9 / 25

EnKF: A Recap

State estimation for dynamical system

$$u_{n+1} = \mathbb{M}(u_n)$$
$$y_{n+1} = Hu_{n+1} + \eta_{n+1}$$

Algorithm (Kalman Update)

Ensure: Initial ensemble $\{u_n\}_{n \in 1,...,N}$

- 1: Forecast $\hat{u}_{n+1} = \mathbb{M}(u_n)$
- *2:* Compute Empirical mean and covariance, \bar{u}_{n+1} , P_{n+1}
- 3: Compute Kalman gain $K_{n+1} = P_{n+1}H^T(HP_{n+1}H^T + \Gamma)^{-1}$
- 4: analysis $u_{n+1} = \hat{u}_{n+1} + K_{n+1}(y_{n+1} H\hat{u}_{n+1})$

where
$$\bar{u}_n = \frac{1}{J} \sum_{j=1}^J u_n^j$$
, $P_n = \frac{1}{J} \sum_{j=1}^J u_n^j (u_n^j)^T - \bar{u}_n (\bar{u}_n)^T$

"Standard" Ensemble Kalman Inversion (EnKI): A Reconglesias, Law, and Stuart 13

The joint state-parameter estimation in the context of EnKF proceeds by defining a mapping, artificial dynamics, and observation operator as follows:

$$\mathbb{M}(z) = \left\{ \begin{array}{c} u \\ \mathbb{G}(u) \end{array} \right\}$$

$$z_{n+1} = \left\{ \begin{array}{c} u_{n+1} \\ p_{n+1} \end{array} \right\} = \mathbb{M}(z_n) = \left\{ \begin{array}{c} u_n \\ \mathbb{G}(u_n) \end{array} \right\}$$

 $y_{n+1} = y + \eta_{n+1}$ H = [0, I]

- EnKF uses an ensemble of particles, each updated at every iteration by the Kalman update formula
- $\{y_n\}$ is generated by perturbing true observed data y by a Gaussian random variable

Tan Bui (The Oden Institute)

Results for Standard EnKI

- 1D nonlinear elliptic inverse example with 32 parameters
- Initial samples are drawn from $\mathcal{N}(0, 0.01^2 I)$, and noise $\mathcal{N}(0, 0.5^2 I)$

Standard dynamics and Gradient Descent dynamicsStandard Dynamics:Gradient Descent Dynamics:

$u_{n+1} \\ p_{n+1}$	$\bigg\} = \bigg\{ \begin{array}{c} u_n \\ \mathbb{G}(u_n) \end{array} \bigg\}$	$\left\{\begin{array}{c}u_{n+1}\\p_{n+1}\end{array}\right\} = \left\{$	$u_{n}-\alpha F\left(a\right)$ $\mathbb{G}\left(u_{n}-\alpha F\left(a\right)\right)$
	Method	F	a
_	GD-OpEnKF	$\nabla \mathcal{J}$	$\{u\}_{i=1}^{N}$
	GDmean-OpEnKF	$ abla \mathcal{J}$	$ar{u}$
	H-OpEnKF	$(abla^2 \mathcal{J})^{-1} abla \mathcal{J}$	$\{u\}_{i=1}^{N}$
	Hmean-OpEnKF	$(abla^2 \mathcal{J})^{-1} abla \mathcal{J}$	$ar{u}$
	GDa-OpEnKF	$\sum\limits_{i=1}^N w_i(u_i-ar u)$	$\{u_i\}_{i=1}^N$
	GDmax-OpEnKF	$\sum\limits_{i=1}^{N} w_{max}(u_i - ar{u})$	$\{u_i\}_{i=1}^N$

Table: Variations of OpEnKF

Tan Bui	(The O	den	Institute))
---------	--------	-----	------------	---

Nonlinear inversion in two spatial dimension: 50 particles, 1.3K parameters

Tan Bui (The Oden Institute)

Pho-Ices Group

13 / 25

Duality and Optimization view of EnKF

Nonlinear inversion in three spatial dimension: 100 particles, 12K parameters

Tan Bui (The Oden Institute)

Pho-Ices Group

14 / 25

Convergence in the small time limit

Theorem

Suppose $\mathbb{G}(u) = Au$. OpEnKI can be considered as an Euler-Maruyama discretization of of an SDE. Ignoring the noise, and in the limit of zero

$$\frac{du^{j}}{dt} = \underbrace{-C(u)\nabla\mathcal{J}(u^{j})}_{\text{"Gauss-Newton" step}} - \underbrace{\alpha C(u)\tilde{H}_{GN}\nabla\mathcal{J}(\bar{u})}_{\text{"Gradient" step}}$$

time step, there holds

Two observations

1 The gradient step of the mean particle is introduced by OpEnKF

Convergence in the small time limit

Theorem

Suppose $\mathbb{G}(u) = Au$. OpEnKI can be considered as an Euler-Maruyama discretization of of an SDE. Ignoring the noise, and in the limit of zero

$$\frac{du^{j}}{dt} = \underbrace{-C(u)\nabla\mathcal{J}(u^{j})}_{\text{"Gauss-Newton" step}} - \underbrace{\alpha C(u)\tilde{H}_{GN}\nabla\mathcal{J}(\bar{u})}_{\text{"Gradient" step}}$$

time step, there holds

Two observations

- **1** The gradient step of the mean particle is introduced by OpEnKF
- While the subspaces spanned by EnKF particles remains the same, those of OpEnKF changes from one step to another.

D Optimization-based Ensemble Kalman Inversion

Tan Bui 🛛	The Oden	Institute)

Duality and Optimization view of EnKF

Linear forward + Gausian prior + Gaussian noise One-Step Kalman Filter: Dual view 1

$$\min_{\mathbf{u},\mathbf{v}} \mathcal{J}(\mathbf{u};\mathbf{v};\mathbf{u}_0,\mathbf{d}) := \frac{1}{2} \|\mathbf{d} - \mathbf{v}\|_{\mathbf{\Gamma}^{-1}}^2 + \frac{1}{2} \|\mathbf{u} - \mathbf{u}_0\|_{\mathcal{C}^{-1}}^2, \quad s.t. \quad \mathcal{A}\mathbf{u} = \mathbf{v}$$

Linear forward + Gausian prior + Gaussian noise One-Step Kalman Filter: Dual view 1

$$\min_{\mathbf{u},\mathbf{v}} \mathcal{J}(\mathbf{u};\mathbf{v};\mathbf{u}_0,\mathbf{d}) := \frac{1}{2} \|\mathbf{d} - \mathbf{v}\|_{\mathbf{\Gamma}^{-1}}^2 + \frac{1}{2} \|\mathbf{u} - \mathbf{u}_0\|_{\mathcal{C}^{-1}}^2, \quad s.t. \quad \mathcal{A}\mathbf{u} = \mathbf{v}$$

One-Step Kalman Filter: Dual view 2

$$\mathcal{L}(\mathbf{u}, \mathbf{v}, \boldsymbol{\lambda}) = \frac{1}{2} \|\mathbf{d} - \mathbf{v}\|_{\Gamma^{-1}}^2 + \frac{1}{2} \|\mathbf{u} - \mathbf{u}_0\|_{\mathcal{C}^{-1}}^2 + \boldsymbol{\lambda}^T \left(A\mathbf{u} - \mathbf{v}\right).$$

Duality and Optimization view of EnKF

Linear forward + Gausian prior + Gaussian noise One-Step Kalman Filter: Dual view 1

$$\min_{\mathbf{u},\mathbf{v}} \mathcal{J}(\mathbf{u};\mathbf{v};\mathbf{u}_0,\mathbf{d}) := \frac{1}{2} \|\mathbf{d} - \mathbf{v}\|_{\mathbf{\Gamma}^{-1}}^2 + \frac{1}{2} \|\mathbf{u} - \mathbf{u}_0\|_{\mathbf{C}^{-1}}^2, \quad s.t. \quad \mathcal{A}\mathbf{u} = \mathbf{v}$$

One-Step Kalman Filter: Dual view 2

$$\mathcal{L}(\mathbf{u}, \mathbf{v}, \boldsymbol{\lambda}) = \frac{1}{2} \|\mathbf{d} - \mathbf{v}\|_{\Gamma^{-1}}^2 + \frac{1}{2} \|\mathbf{u} - \mathbf{u}_0\|_{\mathcal{C}^{-1}}^2 + \boldsymbol{\lambda}^T (A\mathbf{u} - \mathbf{v}).$$

One-Step Kalman Filter: Dual view 3

$$\mathcal{D}(\boldsymbol{\lambda}) := \inf_{\mathbf{u},\mathbf{v}} \mathcal{L}(\mathbf{u},\mathbf{v},\boldsymbol{\lambda}) = -\frac{1}{2} \boldsymbol{\lambda}^T \left(\boldsymbol{\Gamma} + \mathcal{A} \mathcal{C} \mathcal{A}^T \right) \boldsymbol{\lambda} + \boldsymbol{\lambda}^T \left(\mathcal{A} \mathbf{u}_0 - \mathbf{d} \right)$$

TEXA9

Linear forward + Gausian prior + Gaussian noise One-Step Kalman Filter: Dual view 1

$$\min_{\mathbf{u},\mathbf{v}} \mathcal{J}(\mathbf{u};\mathbf{v};\mathbf{u}_0,\mathbf{d}) := \frac{1}{2} \|\mathbf{d} - \mathbf{v}\|_{\mathbf{\Gamma}^{-1}}^2 + \frac{1}{2} \|\mathbf{u} - \mathbf{u}_0\|_{\mathbf{C}^{-1}}^2, \quad s.t. \quad \mathcal{A}\mathbf{u} = \mathbf{v}$$

One-Step Kalman Filter: Dual view 2

$$\mathcal{L}(\mathbf{u}, \mathbf{v}, \boldsymbol{\lambda}) = \frac{1}{2} \|\mathbf{d} - \mathbf{v}\|_{\Gamma^{-1}}^2 + \frac{1}{2} \|\mathbf{u} - \mathbf{u}_0\|_{\mathcal{C}^{-1}}^2 + \boldsymbol{\lambda}^T (A\mathbf{u} - \mathbf{v}).$$

One-Step Kalman Filter: Dual view 3

$$\mathcal{D}(\boldsymbol{\lambda}) := \inf_{\mathbf{u},\mathbf{v}} \mathcal{L}(\mathbf{u},\mathbf{v},\boldsymbol{\lambda}) = -\frac{1}{2} \boldsymbol{\lambda}^T \left(\boldsymbol{\Gamma} + \mathcal{A} \mathcal{C} \mathcal{A}^T \right) \boldsymbol{\lambda} + \boldsymbol{\lambda}^T \left(\mathcal{A} \mathbf{u}_0 - \mathbf{d} \right)$$

One-Step Kalman Filter: dual view solution

$$\boldsymbol{\lambda}^{*} = \arg \max_{\boldsymbol{\lambda}} \mathcal{D}(\boldsymbol{\lambda}) = \left(\boldsymbol{\Gamma} + \mathcal{A}\mathcal{C}\mathcal{A}^{T}\right)^{-1} \left(\mathcal{A}\mathbf{u}_{0} - \mathbf{d}\right)$$
$$\mathbf{u}^{*} = \mathbf{u}_{0} - \mathcal{C}\mathcal{A}^{T}\boldsymbol{\lambda}^{*} = \mathbf{u}_{0} + \mathcal{C}\mathcal{A}^{T}\left(\boldsymbol{\Gamma} + \mathcal{A}\mathcal{C}\mathcal{A}^{T}\right)^{-1} \left(\mathbf{d} - \mathcal{A}\mathbf{u}_{0}\right)$$

Duality and Optimization view of EnKf

 $\label{eq:linear} \begin{array}{l} \mbox{Linear forward} + \mbox{Gaussian prior} + \mbox{Gaussian noise} \\ \mbox{Define} \end{array}$

$$\begin{aligned} \boldsymbol{\sigma} &\sim \pi_{\boldsymbol{\sigma}} := \mathcal{N}\left(0, \boldsymbol{\Gamma}\right), & \boldsymbol{\delta} &\sim \pi_{\boldsymbol{\delta}} := \mathcal{N}\left(0, \mathcal{C}\right) \\ \boldsymbol{\xi} := \left[\boldsymbol{\sigma}, \boldsymbol{\delta}\right], & \pi\left(\boldsymbol{\sigma}, \boldsymbol{\delta}\right) := \pi_{\boldsymbol{\sigma}} \times \pi_{\boldsymbol{\delta}} \end{aligned}$$

 $[\boldsymbol{\delta}_1, \boldsymbol{\delta}_2...\boldsymbol{\delta}_N]$ and $[\boldsymbol{\sigma}_1, \boldsymbol{\sigma}_2...\boldsymbol{\sigma}_N]$ be ensemble pairs from $\pi(\boldsymbol{\sigma}, \boldsymbol{\delta})$ Randomized Dual $\mathscr{D}(\boldsymbol{\lambda}) = \mathbb{E}_{\pi} \left[\tilde{\mathcal{D}}(\boldsymbol{\lambda}; \mathbf{u}_0, \mathbf{d}, \boldsymbol{\xi}) \right]$, where $\tilde{\mathcal{D}}(\boldsymbol{\lambda}) = \mathbf{E}_{\pi} \left[\tilde{\mathcal{D}}(\boldsymbol{\lambda}; \mathbf{u}_0, \mathbf{d}, \boldsymbol{\xi}) \right]$, where

 $ilde{\mathcal{D}}\left(oldsymbol{\lambda};\mathbf{u}_{0},\mathbf{d},oldsymbol{\xi}
ight):=-rac{1}{2}oldsymbol{\lambda}^{T}\left(oldsymbol{\Gamma}+\mathcal{A}oldsymbol{\delta}oldsymbol{\delta}^{T}\mathcal{A}^{T}
ight)oldsymbol{\lambda}+oldsymbol{\lambda}^{T}\left(\mathcal{A}\left(\mathbf{u}_{0}+oldsymbol{\delta}
ight)-\mathbf{d}-oldsymbol{\sigma}
ight).$

Duality and Optimization view of

 $\label{eq:linear} \begin{array}{l} \mbox{Linear forward} + \mbox{Gaussian prior} + \mbox{Gaussian noise} \\ \mbox{Define} \end{array}$

$$\begin{aligned} \boldsymbol{\sigma} &\sim \pi_{\boldsymbol{\sigma}} := \mathcal{N}\left(0, \boldsymbol{\Gamma}\right), & \boldsymbol{\delta} &\sim \pi_{\boldsymbol{\delta}} := \mathcal{N}\left(0, \mathcal{C}\right) \\ \boldsymbol{\xi} := \left[\boldsymbol{\sigma}, \boldsymbol{\delta}\right], & \pi\left(\boldsymbol{\sigma}, \boldsymbol{\delta}\right) := \pi_{\boldsymbol{\sigma}} \times \pi_{\boldsymbol{\delta}} \end{aligned}$$

 $[\delta_1, \delta_2...\delta_N]$ and $[\sigma_1, \sigma_2...\sigma_N]$ be ensemble pairs from $\pi(\sigma, \delta)$ Randomized Dual

$$\mathscr{D}\left(\boldsymbol{\lambda}\right)=\mathbb{E}_{\pi}\left[ilde{\mathcal{D}}\left(\boldsymbol{\lambda};\mathbf{u}_{0},\mathbf{d},\boldsymbol{\xi}
ight)
ight]$$
, where

$$\tilde{\mathcal{D}}\left(\boldsymbol{\lambda};\mathbf{u}_{0},\mathbf{d},\boldsymbol{\xi}\right):=-\frac{1}{2}\boldsymbol{\lambda}^{T}\left(\boldsymbol{\Gamma}+\mathcal{A}\boldsymbol{\delta}\boldsymbol{\delta}^{T}\mathcal{A}^{T}\right)\boldsymbol{\lambda}+\boldsymbol{\lambda}^{T}\left(\mathcal{A}\left(\mathbf{u}_{0}+\boldsymbol{\delta}\right)-\mathbf{d}-\boldsymbol{\sigma}\right).$$

Monte Carlo approximation of $\mathscr{D}\left(\boldsymbol{\lambda}\right)$ is:

$$\mathscr{D}_N := -rac{1}{2N} \sum_{i=1}^N oldsymbol{\lambda}^T \left(oldsymbol{\Gamma} + \mathcal{A} oldsymbol{\delta}_i^T \mathcal{A}^T
ight) oldsymbol{\lambda} + oldsymbol{\lambda}^T \left(\mathcal{A} \left(oldsymbol{u}_0 + oldsymbol{\delta}_i
ight) - oldsymbol{d} - oldsymbol{\sigma}_i
ight).$$
Duality and Optimization view of EnKf

Linear forward + Gausian prior + Gaussian noise

The optimal solution for the dual problem reads

$$\overline{\boldsymbol{\lambda}}^* := \arg \max_{\boldsymbol{\lambda}} \mathscr{D}_N = \left(\boldsymbol{\Gamma} + \mathcal{A} \Omega \Omega^T \mathcal{A}^T \right)^{-1} \left(\mathcal{A} \left(\mathbf{u}_0 + \overline{\boldsymbol{\delta}} \right) - (\mathbf{d} + \overline{\boldsymbol{\sigma}}) \right).$$

Duality and Optimization view of EnKF

Linear forward + Gausian prior + Gaussian noise

The optimal solution for the dual problem reads

$$\overline{\boldsymbol{\lambda}}^* := \arg \max_{\boldsymbol{\lambda}} \mathscr{D}_N = \left(\boldsymbol{\Gamma} + \mathcal{A} \Omega \Omega^T \mathcal{A}^T \right)^{-1} \left(\mathcal{A} \left(\mathbf{u}_0 + \overline{\boldsymbol{\delta}} \right) - \left(\mathbf{d} + \overline{\boldsymbol{\sigma}} \right) \right).$$

The induced Monte Carlo optimal solution for the primal problem reads

$$\hat{\mathbf{u}}^* := \mathbf{u}_0 - \mathcal{C}\mathcal{A}^T \overline{\boldsymbol{\lambda}}^* = \mathbf{u}_0 + \mathcal{C}\mathcal{A}^T \left(\boldsymbol{\Gamma} + \mathcal{A}\Omega\Omega^T \mathcal{A}^T \right)^{-1} \left(\mathbf{d} + \overline{\boldsymbol{\sigma}} - \mathcal{A} \left(\mathbf{u}_0 + \overline{\boldsymbol{\delta}} \right) \right)$$

Linear forward + Gaussian prior + Gaussian noise

The optimal solution for the dual problem reads

$$\overline{\boldsymbol{\lambda}}^* := \arg \max_{\boldsymbol{\lambda}} \mathscr{D}_N = \left(\boldsymbol{\Gamma} + \mathcal{A} \Omega \Omega^T \mathcal{A}^T \right)^{-1} \left(\mathcal{A} \left(\mathbf{u}_0 + \overline{\boldsymbol{\delta}} \right) - \left(\mathbf{d} + \overline{\boldsymbol{\sigma}} \right) \right).$$

The induced Monte Carlo optimal solution for the primal problem reads

$$\hat{\mathbf{u}}^* := \mathbf{u}_0 - \mathcal{C}\mathcal{A}^T \overline{\boldsymbol{\lambda}}^* = \mathbf{u}_0 + \mathcal{C}\mathcal{A}^T \left(\boldsymbol{\Gamma} + \mathcal{A}\Omega\Omega^T \mathcal{A}^T \right)^{-1} \left(\mathbf{d} + \overline{\boldsymbol{\sigma}} - \mathcal{A} \left(\mathbf{u}_0 + \overline{\boldsymbol{\delta}} \right) \right)$$

If we further randomize \mathbf{u}_0 and \mathcal{C} with $\mathbf{u}_0 + \overline{\delta}$ and $\Omega \Omega^T$: $\overline{\mathbf{u}}^* := \mathbf{u}_0 + \overline{\delta} + \Omega \Omega^T \mathcal{A}^T \left(\mathbf{\Gamma} + \mathcal{A} \Omega \Omega^T \mathcal{A}^T \right)^{-1} \left(\mathbf{d} + \overline{\boldsymbol{\sigma}} - \mathcal{A} \left(\mathbf{u}_0 + \overline{\delta} \right) \right),$ which is exactly the EnKI.

Linear forward + Gausian prior + Gaussian noise

The optimal solution for the dual problem reads

$$\overline{\boldsymbol{\lambda}}^* := \arg \max_{\boldsymbol{\lambda}} \mathscr{D}_N = \left(\boldsymbol{\Gamma} + \mathcal{A} \Omega \Omega^T \mathcal{A}^T \right)^{-1} \left(\mathcal{A} \left(\mathbf{u}_0 + \overline{\boldsymbol{\delta}} \right) - \left(\mathbf{d} + \overline{\boldsymbol{\sigma}} \right) \right).$$

The induced Monte Carlo optimal solution for the primal problem reads

$$\hat{\mathbf{u}}^* := \mathbf{u}_0 - \mathcal{C}\mathcal{A}^T \overline{\boldsymbol{\lambda}}^* = \mathbf{u}_0 + \mathcal{C}\mathcal{A}^T \left(\boldsymbol{\Gamma} + \mathcal{A}\Omega\Omega^T \mathcal{A}^T \right)^{-1} \left(\mathbf{d} + \overline{\boldsymbol{\sigma}} - \mathcal{A} \left(\mathbf{u}_0 + \overline{\boldsymbol{\delta}} \right) \right)$$

If we further randomize \mathbf{u}_0 and \mathcal{C} with $\mathbf{u}_0 + \overline{\delta}$ and $\Omega\Omega^T$: $\overline{\mathbf{u}}^* := \mathbf{u}_0 + \overline{\delta} + \Omega\Omega^T \mathcal{A}^T (\mathbf{\Gamma} + \mathcal{A}\Omega\Omega^T \mathcal{A}^T)^{-1} (\mathbf{d} + \overline{\sigma} - \mathcal{A} (\mathbf{u}_0 + \overline{\delta}))$, which is exactly the EnKI. Unrolling the sums

 $\mathbf{u}_{i} := \mathbf{u}_{0} + \boldsymbol{\delta}_{i} + \Omega \Omega^{T} \mathcal{A}^{T} \left(\boldsymbol{\Gamma} + \mathcal{A} \Omega \Omega^{T} \mathcal{A}^{T} \right)^{-1} \left(\mathbf{d} + \boldsymbol{\sigma}_{i} - \mathcal{A} \left(\mathbf{u}_{0} + \boldsymbol{\delta}_{i} \right) \right),$ which is the well-known EnKF.

Non-Asymptotic Convergence

Linear forward + Gaussian prior + Gaussian noise

Theorem (Non-asymptotic error estimator for EnKI) Let $\delta_i \sim \mathcal{N}(0, \mathcal{C})$, and $\sigma_i \sim \mathcal{N}(0, \Gamma)$, i = 1, ..., N. For any $0 < \varepsilon < \frac{\|\Gamma + \mathcal{A}\mathcal{C}\mathcal{A}^T\|}{\kappa(\mathcal{B}) \|\mathcal{A}\|^2 \|\mathcal{C}\|}$, there exists a constant c, independent of ε , such that

 $\|\mathbf{u}^* - \overline{\mathbf{u}}^*\| \le c\varepsilon$

holds with probability at least $1 - 6 \exp\left(-O\left(N\varepsilon^2\right)\right)$.

Observations

The larger the ensemble size N, the higher the probability of predicting u^{*},

Non-Asymptotic Convergence

Linear forward + Gausian prior + Gaussian noise

Theorem (Non-asymptotic error estimator for EnKI) Let $\delta_i \sim \mathcal{N}(0, \mathcal{C})$, and $\sigma_i \sim \mathcal{N}(0, \Gamma)$, i = 1, ..., N. For any $0 < \varepsilon < \frac{\|\Gamma + \mathcal{A}\mathcal{C}\mathcal{A}^T\|}{\kappa(\mathcal{B}) \|\mathcal{A}\|^2 \|\mathcal{C}\|}$, there exists a constant c, independent of ε , such that

 $\|\mathbf{u}^* - \overline{\mathbf{u}}^*\| \le c\varepsilon$

holds with probability at least $1 - 6 \exp\left(-O\left(N\varepsilon^2\right)\right)$.

Observations

- The larger the ensemble size N, the higher the probability of predicting u^{*},
- We need around $N= \mathbb{O}\left(\varepsilon^{-2}\right)$ to have accurate prediction with high probability.

Ensemble Collapse

Linear forward + Gausian prior + Gaussian noise

- \mathbf{u}_{i}^{k} : *i*th sample in the kth iteration
- $e_i^k = \mathbf{u}_i^k \mathbf{u}^*$: difference between the *i*th sample in the *k*th iteration and the truth

Theorem (No-noise $d = Au^*$)

The following holds:

$$\label{eq:angle_state} \mbox{If Range} \left(\mathcal{A} \Omega^0 \right) = \textit{Range} \left(\mathcal{A} \right), \ \textit{then} \$$

 $\mathcal{A}\boldsymbol{e}_{i}^{k} \rightarrow 0, \text{ as } k \rightarrow \infty$

Tan Bui (The Oden Institute)

21 / 25

Ensemble Collapse

Linear forward + Gaussian prior + Gaussian noise

- \mathbf{u}_i^k : *i*th sample in the *k*th iteration
- $e_i^k = \mathbf{u}_i^k \mathbf{u}^*$: difference between the ith sample in the kth iteration and the truth

Theorem (No-noise $d = Au^*$)

The following holds:

• If
$$\operatorname{Range}(\mathcal{A}\Omega^0) = \operatorname{Range}(\mathcal{A})$$
, then

$$\mathcal{A} \boldsymbol{e}_i^k o 0, \; \textit{as} \; k o \infty$$

2 If Range $(\mathcal{A}\Omega^0) = \operatorname{Range}(\mathcal{A})$ and $\operatorname{Null}(\mathcal{A}) = \{0\}$ then

$${oldsymbol e}^k_i
ightarrow 0, \;$$
 as $k
ightarrow \infty$

Presented

Optimization-based EnKI

Tan Bui	(The Oden Institute)	
---------	----------------------	--

Presented

- Optimization-based EnKI
- Inker as randomization of dual optimization problem

Tan Bui	(The C	Dden Ir	nstitute)	
---------	--------	---------	-----------	--

Outlook

Model-constrained Deep Learning for Inverse Problems

$$\begin{array}{ll} \partial_t u(x,t) + v(x,t) \cdot \nabla u(x,t) = \nu \Delta u(x,t) + f(x), & x \in (0,1)^2, t \in (0,T] \\ \nabla \cdot v(x,t) = 0, & x \in (0,1)^2, t \in (0,T] \\ u(x,0) = u_0(x), & x \in (0,1)^2 \end{array}$$

Given vorticity u at a few points at final time, infer u_0

Outlook

Model-constrained Deep Learning for Inverse Problems

- 1.2

- 0.8

- 0.4

- 0.0

-0.4

- - 0.8

- - 1.2

 $u_{10}, T = 10$

Duality and Optimization view of EnKF

24 / 25

Outlook

Model-constrained Deep Learning for Inverse Problems

0.75

0.60

0.45

0.30

0.15

0.00

-0.15

-0.30

-0.45

-0.60

Exact 0.75 0.60

0.45

0.30

0.15

0.00

-0.15

-0.30

-0.45

-0.60

mcDNN

TNET

0.75
0.60
0.45
0.30
0.15
0.00
-0.15
-0.30
-0.45
-0.60

Duality and Optimization view of EnKF 25 / 25