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Seismic wave propagation -
With C. Burstedde, O. Ghattas, J. R. Martin, G. Stadler, and L. Wilcox

∂E

∂t
=

1

2

(
∇v +∇Tv

)
,

ρ
∂v

∂t
= ∇ · (CE) + f

Strain-velocity formulation

• I: fourth-order identity tensor,

• I: second-order identity tensor,

• f : external volumetric forces,

• C: four-order material tensor.

Animated by Greg Abram

• E: strain tensor,

• v: velocity vector,

• ρ: density,

• ei: ith unit vector,

Inverse problem statement

Earth surface velocity at given locations is recorded

Infer the wave velocities cs =
√
µ/ρ and cp =

√
(λ+ 2µ) /ρ
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An example of global seismic inversion
with Burstedde, C., Ghattas, O., Martin, J., Stadler, G., and Wilcox

inversion field: cp in acoustic wave equation

prior mean: PREM (radially symmetric model)

“truth” model: S20RTS (Ritsema et al.), (laterally heterogeneous)

Piecewise-trilinear on same mesh as forward/adjoint 3rd order dG fields

dimensions: 1.07 million parameters, 630 million field unknowns

Final time: T = 1000s with 2400 time steps

A single forward solve takes 1 minute on 64K Jaguar cores

“truth”, sources (black) MAP, receivers (white)
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67,770 parameters

431,749 parameters
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Uncertainty quantification

C ≈ C0 − C
1/2
0 V rDrV

∗
rC

1/2
0

Details in:
Bui-Thanh, T., Burstedde, C., Ghattas, O., Martin, J., Stadler, G., and Wilcox,
L.C.,Extreme-scale UQ for Bayesian inverse problems governed by PDEs, ACM/IEEE
Supercomputing SC12, Gordon Bell Prize Finalist, 2012.
Bui-Thanh, T., Ghattas, O., Martin, J., and Stadler, G., A computational framework for
infinite-dimensional Bayesian inverse problems. Part I: The linearized case, SIAM Journal
on Scientific Computing, 35(6), pp. A2494–A2523, 2013.

Tan Bui (The Oden Institute) Pho-Ices Group
Duality and Optimization view of EnKF
6 / 25



Outline

1 Optimization-based Ensemble Kalman Inversion

2 EnKF from Duality
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PDE-constrained Inverse problem: Summary

Given observations of the form y = G(u) + η

−∇ · (eu∇w) = 0 in Ω

−eu∇w · n = Bi w in ∂Ω \ ΓR

−eu∇w · n = −1 on ΓR

Infer u by solving

min
u

1

2
∥y −G(u)∥2Γ−1︸ ︷︷ ︸

J

+
β

2
∥u− u0∥2C−1
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EnKF: A Recap

State estimation for dynamical system

un+1 = M (un)

yn+1 = Hun+1 + ηn+1

Algorithm (Kalman Update)

Ensure: Initial ensemble {un}n∈1,...,N
1: Forecast ûn+1 = M(un)
2: Compute Empirical mean and covariance, ūn+1, Pn+1

3: Compute Kalman gain Kn+1 = Pn+1H
T (HPn+1H

T + Γ)−1

4: analysis un+1 = ûn+1 +Kn+1(yn+1 −Hûn+1)

where ūn =
1

J

J∑
j=1

ujn, Pn =
1

J

J∑
j=1

ujn(u
j
n)

T − ūn(ūn)
T
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“Standard” Ensemble Kalman Inversion (EnKI): A Recap
Iglesias, Law, and Stuart 13

The joint state-parameter estimation in the context of EnKF proceeds by
defining a mapping, artificial dynamics, and observation operator as
follows:

M(z) =

{
u

G(u)

}

zn+1 =

{
un+1

pn+1

}
= M(zn) =

{
un

G(un)

}
yn+1 = y + ηn+1

H = [0, I]

EnKF uses an ensemble of particles, each updated at every iteration
by the Kalman update formula

{yn} is generated by perturbing true observed data y by a Gaussian
random variable
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Results for Standard EnKI

1D nonlinear elliptic inverse example with 32 parameters

Initial samples are drawn from N
(
0, 0.012I

)
, and noise N

(
0, 0.52I

)
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Standard dynamics and Gradient Descent dynamics
Standard Dynamics:{

un+1

pn+1

}
=

{
un

G(un)

} Gradient Descent Dynamics:{
un+1

pn+1

}
=

{
un−αF (a)

G(un−αF (a))

}
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Optimized-based EnKI (OpEnKI)
Nonlinear inversion in two spatial dimension: 50 particles, 1.3K parameters

(a) True parameter (b) EnKI 11K (c) GD-OpEnKI 100

(d) GDmean-OpEnKI 100 (e) H-OpEnKI 100 (f) Hmean-OpEnKI 100
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Optimized-based EnKI (OpEnKI)
Nonlinear inversion in three spatial dimension: 100 particles, 12K parameters

(g) True parameter (h) EnKI 55

(i) GDa-OpEnKI 50 (j) H-OpEnKI 15
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Optimized-based EnKI (OpEnKI)
Convergence in the small time limit

Theorem

Suppose G (u) = Au. OpEnKI can be considered as an Euler-Maruyama
discretization of of an SDE. Ignoring the noise, and in the limit of zero

time step, there holds

Two observations

1 The gradient step of the mean particle is introduced by OpEnKF

2 While the subspaces spanned by EnKF particles remains the same,
those of OpEnKF changes from one step to another.
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Duality view of Kalman Filter
Linear forward + Gausian prior + Gaussian noise

One-Step Kalman Filter: Dual view 1

min
u,v

J(u;v;u0,d) :=
1

2
∥d− v∥2

Γ−1 +
1

2
∥u− u0∥2C−1 , s.t. Au = v

One-Step Kalman Filter: Dual view 2

L(u,v,λ) =
1

2
∥d− v∥2

Γ−1 +
1

2
∥u− u0∥2C−1 + λT (Au− v) .

One-Step Kalman Filter: Dual view 3

D(λ) := inf
u,v

L(u,v,λ) = −1

2
λT

(
Γ+ACAT

)
λ+ λT (Au0 − d)

One-Step Kalman Filter: dual view solution

λ∗ = argmax
λ

D(λ) =
(
Γ+ACAT

)−1
(Au0 − d)

u∗ = u0 − CATλ∗ = u0 + CAT
(
Γ+ACAT

)−1
(d−Au0)
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Randomized Dual
Linear forward + Gausian prior + Gaussian noise

Define

σ ∼ πσ := N (0,Γ) , δ ∼ πδ := N (0,C)

ξ := [σ, δ] , π (σ, δ) := πσ × πδ

[δ1, δ2...δN ] and [σ1,σ2...σN ] be ensemble pairs from π (σ, δ)

Randomized Dual

D (λ) = Eπ

[
D̃ (λ;u0,d, ξ)

]
, where

D̃ (λ;u0,d, ξ) := −1

2
λT

(
Γ+AδδTAT

)
λ+ λT (A (u0 + δ)− d− σ) .

Monte Carlo approximation of D (λ) is:

DN := − 1

2N

N∑
i=1

λT
(
Γ+Aδiδ

T
i A

T
)
λ+ λT (A (u0 + δi)− d− σi) .
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Randomized Dual
Linear forward + Gausian prior + Gaussian noise

The optimal solution for the dual problem reads

λ
∗
:= argmax

λ
DN =

(
Γ+AΩΩTAT

)−1 (
A
(
u0 + δ

)
− (d+ σ)

)
.

The induced Monte Carlo optimal solution for the primal problem reads

û∗ := u0−CATλ
∗
= u0+CAT

(
Γ+AΩΩTAT

)−1 (
d+ σ −A

(
u0 + δ

))
.

If we further randomize u0 and C with u0 + δ and ΩΩT :

u∗ := u0 + δ +ΩΩTAT
(
Γ+AΩΩTAT

)−1 (
d+ σ −A

(
u0 + δ

))
,

which is exactly the EnKI.
Unrolling the sums

ui := u0 + δi +ΩΩTAT
(
Γ+AΩΩTAT

)−1
(d+ σi −A (u0 + δi)) ,

which is the well-known EnKF.
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Non-Asymptotic Convergence
Linear forward + Gausian prior + Gaussian noise

Theorem (Non-asymptotic error estimator for EnKI)

Let δi ∼ N (0,C), and σi ∼ N (0,Γ), i = 1, . . . , N . For any

0 < ε <

∥∥Γ+ACAT
∥∥

κ (B) ∥A∥2 ∥C∥
, there exists a constant c, independent of ε, such

that
∥u∗ − u∗∥ ≤ cε

holds with probability at least 1− 6 exp
(
−O

(
Nε2

))
.

Observations

1 The larger the ensemble size N , the higher the probability of
predicting u∗,

2 We need around N = O
(
ε−2

)
to have accurate prediction with high

probability.

Tan Bui (The Oden Institute) Pho-Ices Group
Duality and Optimization view of EnKF

20 / 25



Non-Asymptotic Convergence
Linear forward + Gausian prior + Gaussian noise

Theorem (Non-asymptotic error estimator for EnKI)

Let δi ∼ N (0,C), and σi ∼ N (0,Γ), i = 1, . . . , N . For any

0 < ε <

∥∥Γ+ACAT
∥∥

κ (B) ∥A∥2 ∥C∥
, there exists a constant c, independent of ε, such

that
∥u∗ − u∗∥ ≤ cε

holds with probability at least 1− 6 exp
(
−O

(
Nε2

))
.

Observations

1 The larger the ensemble size N , the higher the probability of
predicting u∗,

2 We need around N = O
(
ε−2

)
to have accurate prediction with high

probability.

Tan Bui (The Oden Institute) Pho-Ices Group
Duality and Optimization view of EnKF

20 / 25



Ensemble Collapse
Linear forward + Gausian prior + Gaussian noise

uk
i : ith sample in the kth iteration

eki = uk
i − u∗: difference between the ith sample in the kth iteration

and the truth

Theorem (No-noise d = Au∗)

The following holds:

1 If Range
(
AΩ0

)
= Range (A), then

Aeki → 0, as k → ∞

2 If Range
(
AΩ0

)
= Range (A) and Null (A) = {0} then

eki → 0, as k → ∞
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Summary

Presented

1 Optimization-based EnKI
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Outlook
Model-constrained Deep Learning for Inverse Problems

Given vorticity u at a few points at final time, infer u0
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